Research Interests

  • Collective Intelligence
  • Reinforcement Learning
  • Quantum Machine Learning
  • Surrogate Modeling
  • Explainability

Selected Publications

Show all

Teaching


Theses

  • Florian Helmberger, Philipp Altmann, Thomas Gabor, Claudia Linnhoff-Popien, “Comparing Echo State Networks and Spiking Neural Networks for Reservoir Computing,” 2025 (Bachelor).
  • David Engel, Maximilian Zorn, Philipp Altmann, Claudia Linnhoff-Popien, “Enhancing Cooperative MARL with Curriculum Learning for Dynamic Role Assignment,” 2025 (Bachelor).
  • Johannes Kindermann, Philipp Altmann, Jonas Nüßlein, Claudia Linnhoff-Popien, “Query-Efficient Reinforcement Learning from Preferences,” 2025 (Master).
  • Nicole Kilian, Maximilian Zorn, Philipp Altmann, Claudia Linnhoff-Popien, “Efficient Reinforcement-Learning Curriculum Generation via Quality-Diversity Methods,” 2025 (Bachelor).
  • Simon Salfer, Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien, “Quantum Architecture Search for Solving Quantum Machine Learning Tasks,” 2025 (Bachelor).
  • Marcel Davignon, Maximilian Zorn, Philipp Altmann, Claudia Linnhoff-Popien, “Confidence Based Robotic Grasping With Reinforcement Learning,” 2025 (Bachelor).
  • Joel Friedrich, Tobias Rohe, Philipp Altmann, Claudia Linnhoff-Popien, “Exploring Entanglement-intensity in Variational Quantum Eigensolver Algorithms for Combinatorial Optimization,” 2025 (Master).
  • Josef Stolz, Maximilian Zorn, Philipp Altmann, Claudia Linnhoff-Popien, “Cooperative Sequential Robotic Manipulation with Multi-Agent Reinforcement Learning,” 2025 (Bachelor).
  • Clarissa Kümhof, Philipp Altmann, Maximilian Zorn, Claudia Linnhoff-Popien, “Multi-Objective Reinforcement Learning using Evolutionary Algorithms for Diverse Policy Selection,” 2025 (Master).
  • Isabella Debelic, Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien, “Reinforcement Learning-Based State Preparation Using Parameterized Quantum Gates,” 2024 (Bachelor).
  • Nicolas Holeczek, Leo Sünkel, Philipp Altmann, Claudia Linnhoff-Popien, “Comparison of different hybrid quantum machine learning approaches for image classification on quantum computers,” 2024 (Bachelor).
  • Martin Obwexer, Thomas Gabor, Philipp Altmann, Claudia Linnhoff-Popien, “Enhancing Object Recognition with Uncertainty-Based Fusion Techniques: A Comparative Analysis of Voting Techniques and Machine Learning Models,” 2024 (Master).
  • Amelie Trautwein, Philipp Altmann, Maximilian Zorn, Claudia Linnhoff-Popien, “Evolutionary Prompt-optimization Operators for Code-Generation using LLMs,” 2024 (Bachelor).
  • David Fischer, Jonas Stein, Jago Silberbauer, Philipp Altmann, Claudia Linnhoff-Popien, “A Path Towards Quantum Advantage for the Unit Commitment Problem,” 2024 (Bachelor).
  • Jonas Wild, Maximilian Zorn, Philipp Altmann, Claudia Linnhoff-Popien, “Designing Meta-Rewards for Multi-Agent Reinforcement Learning Cooperation,” 2024 (Master).
  • Timo Witter, Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien, “Improving Variational Quantum Circuits for Hybrid Quantum Proximal Policy Optimization Algorithms,” 2024 (Bachelor).
  • Llewellyn Hochhauser, Philipp Altmann, Michael Kölle, Claudia Linnhoff-Popien, “Influencing behavior through reward manipulation in multi-agentreinforcement-learning,” 2024 (Master).
  • Céline Davignon, Philipp Altmann, Maximilian Zorn, Claudia Linnhoff-Popien, “Portraying Reinforcement Learning Policies via Diverse Behavior selected using Evolutionary Algorithms,” 2024 (Master).
  • Simon Hackner, Philipp Altmann, Maximilian Zorn, Claudia Linnhoff-Popien, “Diversity-Driven Pre-Training for Efficient Transfer Reinforcement Learning,” 2023 (Bachelor).
  • Katharina Winter, Philipp Altmann, Thomy Phan, Claudia Linnhoff-Popien, “Consensus-Based Mutual Acknowledgment Token Exchange,” 2023 (Master).
  • Tom Schubert, Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien, “A Reinforcement Learning Environment for directed Quantum Circuit Synthesis,” 2023 (Bachelor).
  • Sarah Gerner, Thomas Gabor, Philipp Altmann, Claudia Linnhoff-Popien, “Final Productive Fitness in Evolutionary Algorithms and its Approximation via Neural Network Surrogates,” 2023 (Bachelor).
  • Jonas Maurer, Michael Kölle, Philipp Altmann, Claudia Linnhoff-Popien, “Dimensionality Reduction with Autoencoders for Efficient Classification with Variational Quantum Circuits,” 2023 (Bachelor).
  • Alain Feimer, Thomy Phan, Philipp Altmann, Claudia Linnhoff-Popien, “Generalization in Multi-Agent Reinforcement Learning using Minimax Learning,” 2023 (Master).
  • Arnold Unterauer, Thomy Phan, Philipp Altmann, Claudia Linnhoff-Popien, “Hidden Attacks in Multi-Agent Reinforcement Learning,” 2023 (Master).
  • Leonard Feuchtinger, Philipp Altmann, Fabian Ritz, Claudia Linnhoff-Popien, “Distributional Shift in Reinforcement Learning – Learning from a single gridworld,” 2022 (Bachelor).
  • Marco Börner, Thomy Phan, Philipp Altmann, Claudia Linnhoff-Popien “Predicting the optimal approximation level for Quantum Annealing,” 2022 (Bachelor).
  • Felix Sommer, Thomy Phan, Philipp Altmann, Claudia Linnhoff-Popien “Learning Trust in Multi-Agent Systems,” 2020 (Master).