Forschungsinteressen

  • Quantum Artificial Intelligence
  • Reinforcement Learning
  • Multi-Agent Systems
  • AI for Medical and Health Applications

Abschlussarbeiten

  • AI plays competitive Pokemon

Bei Interesse an einem der oben genannten Themen oder eigenen Ideen, schreibe uns eine Anfrage für Abschlussarbeiten.

  • Ingredient Recognition and Relative Quantity Estimation in Food Images on Hardware-Constrained Systems – Michael Anderle

  • Masked Encoder with Projection Layer for Anomaly Detection – Anna Simon
  • Offline Quantum Reinforcement Learning using Metaheuristic Optimization Strategies – Frederick Bickel
  • Exploring Second-Order Predator-Prey Marine Ecosystem Balance with MARL – Tim-Luis Hartenfels
  • Quantum Transformers: Leveraging Variational Quantum Circuits for Natural Language Processing – Julian Hager
  • Quantum Architecture Search for Solving Quantum Machine Learning Tasks – Simon Salfer
  • Analysis and Improvement of Retrieval Quality in the Context of RAG using LLMs on the Code Domain – Melvin Tjiok
  • Minimizing Teleportation and Enhancing Fidelity in Distributed Quantum Computing using a Multi-Objective Evolutionary Algorithm – Abasin Omerzai
  • Emergent Cooperation in Quantum Multi-Agent Reinforcement Learning Using Communication – Christian Reff
  • Emerging Cooperation through Quantum Entanglement in Multi-Agent Systems – Marvin Heinrich
  • Determining Semantic Links in Product Data Using Quantum Restricted Boltzmann Machines – Simon Hehnen
  • Distributed Quantum Machine Learning – Training and Evaluating a machine learning model on a distributed quantum computing simulator – Kian Izadi
  • Learning Independent Multi-Agent Flocking Behavior With Reinforcement Learning – Gregor Reischl
  • QUBO Generation for (MAX-)3SAT Using Generative AI Methods – Philippe Wehr
  • Evaluating Parameter-Based Training Performance of Neural Network and Variational Quantum Circuits – Alexander Feist
  • Exploring Second-Order Predator-Prey Marine Ecosystem Balance with MARL – Tim-Luis Hartenfels
  • Investigating the Lottery Ticket Hypothesis for Variational Quantum Circuits – Leonhard Klingert
  • Architectural Influence on Variational Quantum Circuits in Multi-Agent Reinforcement Learning: Evolutionary Strategies for Optimization – Karola Schneider
  • Quantum Reinforcement Learning via Parameterized Quantum Walks – Sabrina Egger
  • Evaluating Mutation Techniques in Genetic Algorithm-Based Quantum Circuit Synthesis – Tom Bintener
  • Exploring QuGANs for Realistic Graph Generation – An Exploratory Study – Florian Burger
  • Masked Autoencoders for Unsupervised Anomalous Sound Detection – Florian Reusch
  • Evaluating Metaheuristic Optimization Algorithms for Quantum Reinforcement Learning – Daniel Seidl
  • Influencing behavior through reward manipulation in multi-agent reinforcement-learning – Llewellyn Hochhauser
  • Parameter reduction with quantum circuits – The potential of Quantum Proximal Policy Optimization – Timo Witter
  • Anomalous Sound Detection with Multimodal Embeddings – Lara Lanz
  • A Reinforcement-Learning Environment for purposeful Quantum Circuit Design and Quantum State Preparation – Tom Schubert
  • Efficient unsupervised quantum anomaly detection using one-class support vector machines – Afrae Ahouzi
  • Exploring Multi-Agent Reinforcement Learning Strategies in a Predator-Prey Setting – Yannick Erpelding
  • Quantum-Enhanced Denoising Diffusion Model – Gerhard Stenzel
  • Dimensionality Reduction with Autoencoders for Efficient Classification with Variational Quantum Circuits – Jonas Maurer
  • Multi-Agent Exploration through Peer Incentivization – Johannes Tochtermann
  • Analyzing Reinforcement Learning strategies from a parameterized quantum walker – Lorena Wemmer
  • Quantum Multi-Agent Reinforcement Learning using Evolutionary Optimization – Felix Topp
  • Efficient quantum circuit architecture for parameterized coined quantum walks on many bipartite graphs – Viktoryia Patapovich
  • Scalable Discrete Communication in Decentralized MARL using Clustering – Valentin Kerle
  • Generalizing Agents in the Starcraft Multi-Agent Challenge – Balthasar Schüss
  • Quantum Enhanced Policy Gradient Methods for Reinforcement Learning – Mohamad Hgog
  • Embedding Classical Data for efficient Quantum Machine Learning – David Münzer
  • Efficient Data Embedding for offline Handwriting Recognition using Quantum Support Vector Machines – Leopold Bodendörfer
  • Efficient embedding in Quantum Support Vector Machines using a specialized NISQ approach – Jonathan Wulf
  • A comparison of Generative Adversarial Networks and Variational Autoencoders for Density Estimation – Gerhard Stenzel
  • Anomaly Detection on Medical Images using Classification of Clustering Results – Sebastian Haugg
  • A Risk-Sensitive Approach for modeling the Hedging Portfolio Problem with Reinforcement Learning – Quentin Mathieu
  • Exploring the impact of markets on the credit assignment problem in a multi-agent environment – Zarah Zahreddin
  • Learning to Participate through Trading of Reward Shares – Tim Matheis

Lehrveranstaltungen

  • Rechnerarchitektur: SS25, SS24, SS23, SS22 (Lehrpreis beste Bachelor Vorlesung), SS21
  • Betriebssysteme: WS23/24, WS22/23 (Lehrpreis beste Bachelor Vorlesung), WS21/22, WS20/21
  • Quantum Applications: SS23, SS22
  • Intelligent Systems: WS24/25, WS23/24, WS22/23

  • Quantum Computing Programming: WS24/25, SS24, WS23/24, SS23, WS22/23, SS22, WS21/22, SS21

  • Trends in Mobilen und Verteilten Systemen Seminar: WS25/26, WS24/25, SS24, WS23/24, SS23, WS22/23, SS22, WS21/22, SS21
  • AI for Health Masterseminar: SS25

  • Arbeitsgemeinschaft AI for Health: WS25/26, SS25

Akademisches Ehrenamt

  • IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024: Reviewer
  • Springer Nature – Computer Science: Reviewer
  • IEEE International Conference on Quantum Software: Session Chair
  • IEEE International Conference on Quantum Computing and Engineering – Quantum Machine Learning Workshop: Program Committee
  • The 39th Annual AAAI Conference on Artificial Intelligence: Program Committee
  • Quantum Artificial Intelligence & Optimization 2025: Organizer & Workshop Chair
  • Quantum Artificial Intelligence & Optimization 2026: Organizer & Workshop Chair

Publikationsliste derzeit nicht vollständig. Siehe meine Website oder Google Scholar für eine vollständige Liste

Publikationsliste