Exponential Incomparability of Tree-like and Ordered Resolution

Jan Johannsen

Draft, April 24 2001

In [2], we have proved an exponential lower bound of the form $2^{\Omega(n \log n)}$ on the size of ordered resolution refutations of a certain set of clauses. Here we show that this set of clauses has quasi-polynomial size tree-like resolution refutations, thus giving an exponential separation of ordered from tree-like resolution. In particular, since tree-like refutations of minimal size are regular, it follows that regular resolution can have an exponential speed-up over ordered resolution. This answers a question that was left open in [2].

The exponential separation in the opposite direction follows from the work of [1]. They give an exponential lower bound of the form $2^{\Omega(n/\log n)}$ for treelike resolutions of the pebbling clauses Peb_G associated to certain graphs G on n vertices, which have high pebbling number $\Omega(n/\log n)$. They also provide linear size, constant width dag-like resolution refutations of these clauses. It is easy to observe that these can even be obtained as ordered refutations.

Thus we have a strongly exponential separation of tree-like from ordered resolution in this direction also. A weakly exponential separation, with a lower bound of the form $2^{\Omega(n^{\epsilon})}$, was already shown in [2].

The String-of-Pearls principle

From a bag of m pearls, which are colored red and blue, n pearls are chosen and placed on a string. The string-of-pearls principle $SP_{n,m}$ says that, if the first pearl is red and the last one is blue, then there must be a blue pearl next to a red pearl somewhere on the string. $SP_{n,m}$ is expressed by the following set of clauses in variables $p_{i,j}$ and r_j for $i \in [n]$ and $j \in [m]$, where $p_{i,j}$ means that pearl j is at position i on the string, and r_j means that pearl j is colored red:

$\bigvee_{j=1}^{m} p_{i,j}$	$\mathfrak{i} \in [\mathfrak{n}]$	(1)
$\bar{p}_{i,k} \lor \bar{p}_{j,k}$	$i,j \in [n], \ k \in [m], \ i \neq j$	(2)
$\bar{p}_{i,j} \vee \bar{p}_{i,k}$	$i \in [n], j,k \in [m], j \neq k$	(3)
$p_{1,j} \rightarrow r_j$	$\mathfrak{j}\in[\mathfrak{m}]$	(4)
$p_{n,j} ightarrow \overline{r}_j$	$\mathfrak{j} \in [\mathfrak{m}]$	(5)
$p_{i,j} \wedge r_j \wedge p_{(i+1),k} \to r_k$	$1 \leq i < n, \; j,k \in [m], \; j \neq k$	(6)

The string-of-pearls clauses $SP_{n,m}$ were introduced in [2], they are a modified and simplified version of the clauses related to the st-connectivity problem that were introduced by Clote and Setzer [3].

Theorem 1. The clauses $SP_{n,m}$ have tree-like resolution refutations of size $nm^{O(\log n)}$.

Proof. First we note that for $i < h < i' \in [n]$, the clauses

 $p_{i,j} \wedge r_j \wedge p_{i',j'} \rightarrow r_{j'} \qquad \text{for } j,j' \in [m]$

each have a tree-like proof of size $O(m^2)\ \mbox{from the }2m\ \mbox{clauses}$

 $p_{i,j} \wedge r_j \wedge p_{h,k} \rightarrow r_k$ and $p_{h,k} \wedge r_k \wedge p_{i',j'} \rightarrow r_{j'}$ for $k \in [m]$.

First, each pair of clauses is resolved with each other, eliminating the variable r_k , and then the resulting m clauses are resolved one by one with the axiom $\bigvee_{k=1}^{m} p_{h,k}$.

The set of clauses $p_{1,j} \wedge r_j \wedge p_{n,j'} \rightarrow r_{j'}$ for $j, j' \in [m]$ can be refuted in size $O(m^3)$ as follows: First they are resolved with the clauses $p_{1,j} \rightarrow r_j$, giving the clauses $p_{1,j} \wedge p_{n,j'} \rightarrow r_{j'}$. A proof as above of size $O(m^2)$ using the axiom $\bigvee_{j=1}^{m} p_{1,j}$ produces $p_{n,j'} \rightarrow r_{j'}$ for $j' \in [m]$. These are resolved with the clauses $p_{n,j'} \rightarrow \bar{r}_{j'}$, and the remaining unit clauses $p_{n,j'}$ can be resolved with the axiom $\bigvee_{i'=1}^{m} p_{n,j'}$.

To obtain the clauses $p_{1,j} \wedge r_j \wedge p_{n,j'} \rightarrow r_{j'}$, we form for each of them a 2m-ary tree, in which each clause $p_{i,j} \wedge r_j \wedge p_{i',j'} \rightarrow r_{j'}$ is obtained from 2m clauses

$$p_{i,j} \wedge r_j \wedge p_{\lceil \frac{i+i'}{2} \rceil, k} \to r_k$$
 and $p_{\lceil \frac{i+i'}{2} \rceil, k} \wedge r_k \wedge p_{i', j'} \to r_{j'}$ for $k \in [m]$.

as above. At the leaves, the axioms $p_{i,j} \wedge r_j \wedge p_{(i+1),j'} \rightarrow r_{j'}$ are used. Since the depth of the tree is $\lceil \log n \rceil$, it has $(2m)^{\lceil \log n \rceil + 1}$ many nodes, each corresponding to a subproof of size $O(m^2)$. As there are m^2 of these trees, the whole proof is of size at most $2n \cdot m^{\lceil \log n \rceil + 4}$. The clauses $SP_{n,m}$ are modified, giving clauses $SP'_{n,m}$ for which a lower bound on ordered resolutions can be proved, as follows: For $i \in [n]$ and $j \leq \frac{n}{4}$ define a certain value $f(i,j) \in [n]$. Then the clauses (4) and (6) for $1 \leq i < \frac{n}{2}$ are replaced by

$$\begin{split} p_{f(1,j),\ell} \wedge p_{1,j} &\to r_j \\ p_{f(i+1,k),\ell} \wedge p_{i,j} \wedge r_j \wedge p_{(i+1),k} &\to r_k \end{split}$$

for every $l \in [m]$, and the clauses (5) and (6) for $\frac{n}{2} < i < n$ are replaced by

$$\begin{split} p_{f(\mathfrak{n},j),\ell} \wedge p_{\mathfrak{n},j} &\to \overline{r}_{j} \\ p_{f(\mathfrak{i},j),\ell} \wedge p_{\mathfrak{i},j} \wedge r_{j} \wedge p_{(\mathfrak{i}+1),k} \to r_{k} \end{split}$$

again for each $\ell \in [m]$. For details see [2], where the following theorem is proved:

Theorem 2. The clauses $SP'_{n,m}$ for $m \ge \frac{9}{8}n$ require ordered resolution refutations of size $2^{\Omega(n \log n)}$.

On the other hand, the original clauses (4), (5) and (6) can be derived from $SP'_{n,m}$ by small tree-like proofs, thus we obtain the following consequence of our proof above:

Corollary 3. The clauses $SP'_{n,m}$ have tree-like resolution refutations of size $nm^{O(\log n)}$.

Thus we have a strongly exponential separation between ordered and treelike Resolution.

References

- [1] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-optimal separation of tree-like and general resolution. ECCC TR00-005, 2000.
- [2] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johannsen. On the relative complexity of resolution restrictions and cutting planes proof systems. *SIAM Journal on Computing*, 30:1462-1484, 2000.
- P. Clote and A. Setzer. On PHP, st-connectivity and odd charged graphs. In P. Beame and S. R. Buss, editors, *Proof Complexity and Feasible Arithmetics*, pages 93-117. AMS DIMACS Series Vol. 39, 1998.