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Abstract8

A key challenge in pseudo-boolean solving is the efficient detection and processing of unit literals.9

In SAT solving this is done by using the watched literal scheme, but for general pseudo-boolean10

constraints there is no dominant method. This paper introduces the significant literal framework11

to generalize existing watched literal schemes for pseudo-boolean solvers, which is implemented12

in a modification of the RoundingSAT solver. For this modification, small improvements can be13

observed on the instances from the decision and optimization tracks of the 2024 Pseudo-Boolean14

Competition, and a substantial improvement in instances with large coefficients like Knapsack.15
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1 Introduction21

Contemporary satisfiability (SAT) solvers achieve efficiency by conflict driven clause learning22

(CDCL) and unit propagation, making them a powerful tool for boolean problems like23

model checking in chip development, formal software verification and scheduling problems.24

On the other hand, Integer Linear Programming (ILP) solvers use integer relaxation and25

the branch-and-cut procedure to dominate in industrial applications including production26

planning, network optimization and portfolio selection. Pseudo-boolean solving has emerged27

as a promising middle ground between the two approaches, aiming to combine the advantages28

of both methods. SAT methods like unit propagation and conflict analysis are now applied29

to the powerful cutting plane system underlying ILP solvers.30

However, neither unit propagation nor conflict analysis can be generalized to arbitrary31

pseudo-boolean constraints without careful considerations. The latter received significant32

attention, with various papers discussing different methods of constructing conflict constraints33

[2, 5, 13]. For unit propagation, the focus is on adapting the watched literal scheme introduced34

in the SAT solver Chaff [7], which is part of almost all modern CDCL solvers. However,35

many teams developing competitive pseudo-boolean solvers observed none to only minimal36

improvement compared to the simpler counting method [1, 2, 13]. This changed when37

Devriendt [3] obtained a significant performance increase for his watched literal scheme,38

which replaces the computation of the maximum coefficient of unassigned literals used to39

determine the watched literal set by a fixed upper bound. This method has been implemented40

in the RoundingSAT solver, which is currently considered the fastest pseudo-boolean solver41

[4]. Recently it has been observed that the performance improvement of watched literals can42

be amplified by caching optimizations and a hybrid unit propagation approach [10].43
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23:2 Improving Watched Pseudo-Boolean Propagation with Significant Literals

This paper aims to demonstrate that the watched literal scheme of RoundingSAT can44

be further improved by introducing significant literals, which are especially effective for45

constraints with large coefficient sizes. Our approach uses a tighter upper bound by finding46

the maximum coefficient of unassigned significant literals, but keeps the fixed upper bound as47

in Devriendt’s scheme [3] for constraints without significant literals. The significance criterion48

for literals is determined in such a way that we strike a balance between time savings from49

having fewer watched literals and the higher cost of updating the new watched literal scheme.50

Additionally, we attempt to explain a connection of the performance differences between the51

various watched literal schemes and the size distributions of the constraint coefficients.52

2 Preliminaries53

A pseudo-boolean problem consists of variables xi ∈ {0, 1}, with literals li representing either54

xi or xi := 1− xi and pseudo-boolean constraints C of the form
∑n

i=1 aili ≥ b for ai, b ∈ N.55

Without loss of generality we will assume that the coefficients are in descending order, so56

∀i : ai ≥ ai+1. A cardinality constraint is a pseudo-boolean constraint with ∀i : ai = 1. If57

additionally b = 1, the constraint is a clause.58

We denote the current (partial) assignment of the variables li with ρ, identified with the59

set of literals set to 1. The slack of a pseudo-boolean constraint with the current assignment60

ρ is defined as slack(C, ρ) = −b +
∑

li /∈ρ ai.61

Informally, the slack represents the amount by which the left-hand side can exceed the62

right-hand side without unassigning literals. Thus, if slack(C, ρ) < 0, the constraint C can63

not be satisfied with ρ, and we need to backtrack.64

A literal li is called a unit literal, if slack(C, ρ) < ai. This means that li must be set to 165

in order to satisfy the constraint C, as otherwise slack(C, ρ ∪ {li}) < 0.66

For a pseudo-boolean constraint C we denote its watched literals with W (C), a subset of67

its non-falsified literals, i.e. W (C) ⊆ {li ∈ C : li /∈ ρ}. This is different from SAT, where only68

unassigned literals are watched. The maximum coefficient amax of a constraint C is defined69

as amax := max{ai ∈ C : li, li /∈ ρ}. If all literals of C are assigned, we define it as amax = 0.70

The watch slack is the slack restricted to W (C): wslack(C, ρ) = −b +
∑

li∈W (C) ai. By71

definition wslack(C, ρ) ≤ slack(C, ρ) holds.72

▶ Lemma 1. C contains a unit literal if and only if no watched literals set W (C) exists such73

that wslack(C, ρ) ≥ amax.74

Proof. If C contains a unit literal, then by definition we have an unassigned literal li with75

slack(C, ρ) < ai and amax ≥ ai. So we arrive at amax ≥ ai > slack(C, ρ) ≥ wslack(C, ρ).76

Thus, no watched literal set W (C) with wslack(C, ρ) ≥ amax can exist.77

If for all sets of literals W (C) we have wslack(C, ρ) < amax, this also holds true for78

W (C) = {li | li /∈ ρ}, i.e. if we watch all non-falsified literals. In that case we have79

wslack(C, ρ) = slack(C, ρ), leading us to slack(C, ρ) < amax, and therefore the literal80

corresponding to amax must be unit. ◀81

If we replace amax with an upper bound, a weaker version of Lemma 1 still holds:82

▶ Lemma 2. Let aup be an upper bound, i.e. aup ≥ amax. If C contains a unit literal, then83

no watched literals set W (C) exists such that wslack(C, ρ) ≥ aup.84

Proof. By Lemma 1 we know that if C contains a unit literal, then we can not choose85

watched literals W (C) such that wslack(C, ρ) ≥ amax. Since aup ≥ amax, this immediately86

implies that we also can not find W (C) with wslack(C, ρ) ≥ aup. ◀87
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The problem of using Lemma 1 as a criterion for finding unit literals is that amax needs88

to be known for all constraints. So every time a variable xi is assigned or unassigned, we89

have to update amax in all constraints that contain xi or xi. This procedure can take up to90

two thirds of the total unit propagation runtime [13], and defeats the original purpose of91

watched literals.92

RoundingSAT instead uses a criterion based on Lemma 2 with aup = a1 [3]. As a1 is93

constant, no updates are necessary to preserve aup ≥ amax. One downside of this approach94

is that now our unit propagation methods can encounter false positives, as the converse of95

Lemma 2 does not hold true. Additionally, it often leads to a larger W (C), increasing the96

work necessary for maintaining the watched literal scheme.97

3 Watched Literal Propagation with Significant Literals98

The idea behind significant literals is finding a middle ground between always updating amax99

and replacing it with a constant upper bound. For that we choose an arbitrary criterion100

determining if li is significant for a constraint C. We denote the set of all significant literals101

for C with S(C). Since the criterion does not depend on ρ, S(C) is constant.102

Now we define asmax := max{ai ∈ C : li, li /∈ ρ ∨ li /∈ S(C)}, i.e. asmax is the largest103

coefficient of a literal which is either unassigned or not significant. As with amax, if all literals104

are assigned and significant, we simply define asmax = 0. By definition asmax ≥ amax, so we105

can apply Lemma 2 with aup = asmax.106

This framework generalizes the two previously mentioned methods. If we choose a107

significance criterion which declares all literals as significant, we have asmax = amax and108

recover the method which calculates amax for all constraints. If we instead declare no literal109

to be significant for any constraint, we have asmax = a1 and recover the current method in110

RoundingSAT [3].111

3.1 Algorithm112

Algorithm 1 demonstrates how to set C.asmax to the value of asmax. Here C.l[k] is a reference113

to a literal lk occurring in C, C.a[k] denotes its corresponding coefficient, and size(C) denotes114

the number of literals in C. In the while loop we search for an unassigned or non-significant115

literal, and finish immediately if we found one. Since the literals in C are sorted by descending116

order of their coefficients, the first found literal is guaranteed to have the largest coefficient,117

and we have found asmax.118

Algorithm 1 setSmax (constraint C)

1: Input: Constraint C

2: if C.lastset < bkjmps then
3: C.k ← 1
4: C.lastset← bkjmps

5: while C.k ≤ size(C) do
6: lk ← C.l[k]
7: if lk, lk /∈ ρ or li /∈ S(C) then
8: C.asmax ← C.a[k]
9: return

10: C.k ← C.k + 1
11: C.asmax ← 0

CVIT 2016
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To further optimize this procedure, we remember the index k at which we left the loop119

in the last call to setSmax. If no backtracking occurred in the meantime, no literals have120

been unassigned and so all literals before k are still assigned and significant. Thus, the121

first condition in algorithm 1 ensures that we only restart the search from the beginning if122

a backjump occurred. This idea is directly inspired by the algorithm 2 first presented by123

Devriendt [3].124

When we now assign a literal we check in each constraint in which it is significant, if its125

corresponding coefficient is equal to asmax of that constraint. Only if that it is the case, we126

need to call algorithm 1 to update the value. For unassigning we only need to check for each127

significant constraint if its corresponding coefficient is bigger than asmax and if so set asmax128

to its coefficient.129

Now we need to integrate the new C.asmax into the unit propagation of RoundingSAT,130

which consists of propagateOpt, processWatches and backjump [3]. Luckily only the131

first routine needs to be modified into algorithm 2, since it is the only one dependent on the132

choice of aup. This independence of aup also holds for proof of the watch slack invariant [3],133

which means that all routines correctly preserve C.wslk = wslack(C, ρ).134

Algorithm 2 propagate (constraint C, integer idx), modification of propagateOpt [3]

1: Input: assignment ρ, literal l, constraint C

2: if C.lastprop < bkjmps then
3: C.i← 1
4: C.j ← 1
5: C.lastprop← bkjmps

6: if C.wslk + C.a[idx] ≥ C.asmax ∨ S(C) ̸= ∅ then
7: while C.i ≤ size(C) and C.wslk < C.asmax do
8: if C.l[i] /∈ ρ and C.l[i] /∈W (C) then
9: ▷ Add C.l[i] to watched literals

10: W (C)←W (C) ∪ {C.l[i]}
11: C.wslk← C.wslk + C.a[i]
12: C.i← C.i + 1
13: if C.wslk ≥ C.asmax then
14: ▷ Enough watched literals, unwatch propagated literal
15: W (C)←W (C) \ {C.l[idx]}
16: return OK
17: if C.wslk < 0 then return CONFLICT
18: ▷ A unit literal could exist
19: while C.j ≤ size(C) and C.wslk < C.a[j] do
20: lj ← C.l[j]
21: if lj , lj /∈ ρ then
22: ▷ Enqueue new unit literal
23: ρ← ρ ∪ {lj}
24: C.j ← C.j + 1
25: return OK

However, one needs to be careful about which optimization of propagateOpt are still135

logically sound for a non-static aup. The first optimization can be kept, as the following136

lemma shows.137

▶ Lemma 3. If no backtracking occurred, the while loops in line 7 and 19 can be restarted at138
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the index where they left off in the last call, without changing the behaviour of the algorithm.139

Proof. Without backtracking any literal assigned in ρ at the last call to function 2 remain140

assigned. Thus, if i is the index, where the while loop of line 7 left off, the literals l1, . . . li−1141

either remain false or are already watched, and we can safely skip them.142

Similarly, if the while loop of line 19 terminates with index j, then all literals l1, . . . lj−1143

are already assigned. Without backtracking this still holds true now, and we can restart the144

search with index j. ◀145

The second optimization, which skips the search for new watched literals if C.wslk +146

C.a[idx] ≥ C.aup, does not work for non-constant aup. The idea behind it is that if at some147

assignment the while loop of line 7 terminates because of the condition C.wslk < C.asmax,148

all non-falsified literals are watched. Until we have backtracked so far that this specific149

assignment is reversed, all non-falsified literals remain watched, and any further search150

for new literals to watch will be unnecessary. However, with a non-constant aup further151

assignments can make it possible to fulfil wslack(C, ρ) ≥ aup, even if that was not possible at152

some past call. Thus, the optimization can only be applied if aup is constant in the constraint.153

In our case we simply check this when S(C) = ∅, since we have asmax = a1 if no literals are154

significant for a constraint.155

3.2 Significance Criteria156

To elaborate what significance criteria are useful, we look at the following “worst case”157

constraint for the current RoundingSAT unit propagation system: 100y +
∑100

i=1 xi ≥ 10.158

Starting with ρ = ∅, we have a1 = amax = 100 and slack(C, ρ) = 190. Then the159

implementation iteratively adds watched literals until wslack(C, ρ) ≥ 100, which results in160

W (C) = {y, x1, . . . x10}. If the next decision of the solver is ρ = {y}, all 100 xi literals will161

be added to W (C) without achieving wslack(C, ρ) ≥ 100. This means that until the solver162

reverses the assignment of y, the watched set W (C) will be unnecessarily large, and no unit163

literal can exist until at least 90 of the xi variables are assigned.164

When we instead use significant literals and a criterion which declares y to be significant165

for the constraint, we only need wslack(C, ρ) ≥ 1 after ρ = {y}. This allows for the much166

smaller watched set W (C) = {x1, . . . x11}, which reduces the workload for updating the167

watched literal scheme in further assignments.168

Here the difference between the two watched literal schemes is exaggerated, as the example169

constraint is deliberately chosen to amplify this problem. Simply choosing the equivalent170

constraint 10y +
∑100

i=1 xi ≥ 10 allows the current RoundingSAT implementation to watch171

only roughly twice as many literals as the significant literal approach. However, it still172

illustrates that the difference between the two watched literal schemes is mainly dependent173

on the size of the constraint coefficients. This will also be supported by empirical evidence174

in the following section.175

We experiment with various significance criteria, which aim to identify literals where the176

increased cost of updating asmax is outweighed by allowing for a smaller watched literal set177

W (C). Let c ∈ N be a fixed cut-off value, and s ∈ N a fixed scaling factor . We consider the178

following criteria, where the literal li with coefficient ai is significant for a constraint C if:179

(Absolute size) ai > c180

(Absolute size of maximum coefficient) a1 > c181

(Relative size) a1 > s
∑n

i=2 ai182

Each of the three criteria can also be restricted to only input constraints, which we will183

mark as “C input” in the legends of runtime plots.184

CVIT 2016
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Figure 1 Runtime comparison on the DEC-LIN track. The number of instances solved is given
in parentheses.

4 Experimental Evaluation185

To perform the evaluation we use commit d34b6bed of the RoundingSAT solver, which186

is the latest version as of December 2024 [4]. We extended RoundingSAT to implement187

the unit propagation with significant literals. The implementation and the data presented188

in the following plots are publicly available [9]. It should be noted that - as in the current189

RoundingSAT implementation - the respective watched literal scheme is only applied190

to “true” pseudo-boolean constraints, while clauses and cardinality constraints are treated191

separately. All runtime measurements are done without proof logging, although we verified192

all certificates of an independent run using the VeriPB verifier [6]. The benchmark was run193

on an AMD Ryzen 5950X CPU with a timeout of 3600s.194

Our first dataset will consist of the 398 selected instances of the DEC-LIN track in195

the Pseudo-Boolean Competition 2024 [11], which aim to be a representative sample of196

pseudo-boolean decision problems. We evaluate the unmodified RoundingSAT solver (R-197

SAT) without the optional SoPlex Linear Programming integration and without the hybrid198

mode suggested by Robert Nieuwenhuis et al. [10], as both actually reduce the number of199

instances solved for this specific dataset. Additionally, we evaluate the counting method -200

which explicitly calculates the slack of each constraint - by disabling watched propagation in201

RoundingSAT. Finally we present the best performing significance criteria and “Standard202

Watched”, which uses a significance criterion declaring every literal to be significant for all203

its constraints, in order to represent the traditional watched literal scheme with aup = amax.204

Figure 1 demonstrates that the counting method is less efficient than the unit propagation205

by Devriendt [3], although faster than the naive way of implementing watched literals. We206

also observe that some significance criteria already gain a small advantage over the existing207

RoundingSAT implementation on the DEC-LIN instances. An extensive evaluation of208

different significance criteria on these instances is given in appendix C.209
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As shown in appendix A, the most successful criteria for DEC-LIN also perform well on210

the OPT-LIN track in the Pseudo Boolean Competition 2024, which comprises a collection of211

487 optimization problems. Here again, a small improvement compared to RoundingSAT212

can be observed.213

Across both datasets we notice that unit propagation with significant literals works best214

when it is only applied to the input constraints and not to the learned constraints. Our215

explanation for this behaviour is the difference in the distribution of coefficient sizes as shown216

in Figures 2 and 3.217

To produce Figure 2 we have collected all constraints in the selected instances of the DEC-218

LIN track, which are not clauses or cardinality constraints and group all their coefficients219

by absolute values in buckets. For Figure 3 we did the same for all learned constraints220

RoundingSAT on the dataset, but excluded instances which are not solved within the 3600s221

timeout.222

We observe that coefficients in input constraints are far more unevenly distributed. Thus,223

asmax can often be far smaller than amax, leading to a smaller and therefore less expensive224

watched literal set. On learned constraints with a more even distribution, asmax remains225

similar to amax, thus the cost of updating asmax outweighs the benefit of only marginally226

smaller watched literal sets.227

While significant literals already yield a small improvement on general instances, they are228

substantially better if the instances mainly consist of constraints with large coefficients. One229

example are the 783 Knapsack instances submitted to the OPT-LIN track of the Pseudo230

Boolean Competition 2024, as Figure 4 shows.231

The plot demonstrates that the two criteria clearly outperform the unmodified Round-232

ingSAT solver, both in the number of instances solved and the general runtime of hard233

instances.234

In Appendix B we further support this observation by looking at another application with235

large coefficient in the benchmark dataset of the Pseudo Boolean Competition, the “Virtual236

Machine Consolidation” problem [12]. As Figure 6 shows, the significane criteria, which237

performed best for the Knapsack instances, also outperform the current RoundingSAT238

implementation there.239
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Figure 4 Runtime comparison of significant literal schemes on Knapsack instances. The number
of instances solved is given in parentheses.

5 Conclusion240

It has been successfully demonstrated how significant literals can speedup unit propagation241

for pseudo-boolean constraints. Especially for applications with a large average coefficient242

size we have observed a substantial improvement compared to the current RoundingSAT243

watched propagation scheme.244

In addition, an avenue for future improvements is indicated by the observation that the245

performance differences between the watched literal schemes is mainly determined by the246

distribution of coefficients. One idea is to choose a conflict analysis method specifically based247

on its suitability for the watched literal scheme. Alternatively, the significance criterion itself248

could be selected during the preprocessing step based on the coefficients of the individual249

instance.250
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Figure 5 Runtime comparison of significant literal schemes on the OPT-LIN Track.
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Figure 6 Runtime comparison of significant literal schemes on the PBFVMC instances.
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Figure 7 Cut-off value comparison for absolute size criterion on input constraints on the DEC-LIN
Track.
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Figure 8 Cut-off value comparison for absolute size criterion on the DEC-LIN Track.
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Figure 9 Cut-off value comparison for absolute size of maximum coefficient criterion on input
constraints on the DEC-LIN Track. c = 1 is redundant since it would be equivalent to standard
watched literal scheme.
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Figure 10 Cut-off value comparison for absolute size of maximum coefficient criterion on the
DEC-LIN Track. c = 1 is redundant since it would be equivalent to the standard watched literal
scheme.



M. Müßig and J. Johannsen 23:13

230 235 240 245 250 255 260 265 270 275 280 2850

500

1,000

1,500

2,000

2,500

3,000

3,500

Instances

T
im

e
(s

)
R-SAT

C input ∧ C.a1 > 1.5 · C.a2

C input ∧ C.a1 > 5 · C.a2

C input ∧ C.a1 > 1.5 · (C.a2 + C.a3)
C input ∧ C.a1 > 2 · (C.a2 + C.a3)
C input ∧ C.a1 > 5 · (C.a2 + C.a3)

Figure 11 Cut-off value comparison for relative size criterion on input constraints on the DEC-LIN
Track.
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Figure 12 Cut-off value comparison for relative size criterion on the DEC-LIN Track.
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