
BMC 2005 Preliminary Version

Bounded Model Checking for All Regular
Properties

Markus Jehle Jan Johannsen Martin Lange

Nicolas Rachinsky

Institut für Informatik, LMU München

Abstract

The technique of bounded model checking is extended to the linear time µ-calculus,
a temporal logic that can express all monadic second-order properties of ω-words,
in other words, all ω-regular languages. Experimental evidence is presented show-
ing that the method can be successfully employed for properties that are hard or
impossible to express in the weaker logic LTL that is traditionally used in bounded
model checking.

Key words: model checking, satisfiability solving, expressiveness

1 Introduction

Bounded model checking is a verification technique for linear time properties.
Only paths of a certain length through a transition system are considered. It
is therefore not complete but only an approximation method relying on the
fact that unsatisfied formulas often have short counterexamples.

On the other hand, the boundedness plus the fact that models are linear
structures make the problem suitable for a reduction to SAT - the satisfiability
problem for propositional logic. It is known from a different symbolic tech-
nique, namely BDD-based model checking [4], that transition systems can be
encoded as boolean functions, and that these encodings can be significantly
smaller than explicit representations.

So far, bounded model checking has been employed for LTL [10] and vari-
ants thereof. But the expressive power of LTL is rather limited: it is equi-
expressive to First-Order Logic over ω-words [7,6], resp. star-free languages
[13].

Inspired by the success that bounded model checking for LTL has had so
far [3], we show how to do bounded model checking for the linear time µ-
calculus µTL [1]. It is a natural, nonetheless less known, temporal fixpoint
logic that can be obtained in two different ways. Either one replaces the
temporal until in LTL by arbitrary least fixpoint constructs; or one replaces

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Jehle, Johannsen, Lange, Rachinsky

the modal operators in the modal µ-calculus by a single next operator. µTL is
a natural logic because it is expressive complete w.r.t. Monadic Second Order
Logic over infinite words [1], i.e. it can define every ω-regular property. Thus,
this paper increases the set of properties which are known to be verifiable
using bounded model checking up to all ω-regular properties.

Unlike the modal µ-calculus, µTL does not have a strict alternation hier-
archy. Therefore, every µTL formula can be transformed into an equivalent
alternation-free formula. This translation is exponential in the alternation
depth of the original formula. However, formulas with a lot of alternation are
hardly seen as specifications because they are not easy to read. The encoding
into SAT presented here makes use of this result.

The rest of the paper is organised as follows. Section 2 recalls µTL. Sec-
tion 3 presents some examples of regular, i.e. µTL-definable properties that
cannot be expressed in LTL. Section 4 defines a bounded semantics for µTL
along the same lines as the one for LTL [3]. Section 5 contains the reduction
from µTL formulas over paths of bounded length into SAT. Section 6 reports
on a prototype implementation of this translation and presents experimental
results.

What remains to do done is to check which known optimisations for bounded
model checking LTL can be transferred to µTL, to find small completeness
thresholds like it was done for LTL, too [3,5], etc.

2 Preliminaries

2.1 The Linear Time µ-Calculus µTL

Let P be a set of propositions which contains tt and ff and is closed under
complementation, i.e., for every q ∈ P there is an q̄ ∈ P with ¯̄q = q. Let V be
a set of monadic second-order variables. Formulas of µTL in positive normal
form are given by the following grammar.

ϕ ::= q | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | µX.ϕ | νX.ϕ

where q ∈ P and X ∈ V. The set Sub(ϕ) of subformulas of ϕ is defined as
usual, e.g. Sub(µX.ϕ) := {µX.ϕ} ∪ Sub(ϕ).

Formulas are assumed to be well-named, i.e., no variable is bound more
than once in a formula. Then for each ϕ ∈ µTL there is a function fpϕ :
V∩Sub(ϕ) → Sub(ϕ) that maps each variable X occurring in ϕ to its defining
fixpoint formula σX.ψ. If fpϕ(X) is µX.ψ for some formula ψ, we say that X
is of type µ, otherwise X is of type ν.

A total, labeled transition system (LTS) is a tuple T = (S,−→, I, S0)
where S is a set of states. −→ is a binary relation on states s.t. for every
s ∈ S there is a t ∈ S with s −→ t. I : P → 2S interprets the propositional
constants from P in T respecting tt, ff and complementation. S0 ⊆ S is the
set of all starting states.

2

Jehle, Johannsen, Lange, Rachinsky

A path through T is an infinite sequence π = s0s1 . . ., s.t. s0 ∈ S0 and for
all i ∈ N: si −→ si+1.

We write πk for the k-th state of π, Pos(π) for the set of states in π, and
Posk(π) for {πi ∈ Pos(π) | i ≤ k}.

Formulas of µTL are interpreted over a path π = s0s1 . . . of an LTS T .
Free variables are interpreted using an environment ρ : V → 2Pos(π). With
ρ[X 7→ T] we denote the function that maps X to T and behaves like ρ on all
other arguments. Since π will always be derivable from the context we avoid
mentioning it explicitly.

[[q]]ρ := I(q)

[[X]]ρ := ρ(X)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ ∪ [[ψ]]ρ

[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ ∩ [[ψ]]ρ

[[©ϕ]]ρ := {πk | πk+1 ∈ [[ϕ]]ρ}

[[µX.ϕ]]ρ :=
⋂

{T ⊆ Pos(π) | [[ϕ]]ρ[X 7→T] ⊆ T}

[[νX.ϕ]]ρ :=
⋃

{T ⊆ Pos(π) | T ⊆ [[ϕ]]ρ[X 7→T]}

We write πk |=ρ ϕ if πk ∈ [[ϕ]]ρ. If ϕ is closed, i.e., it does not contain any free

variables we write πk |= ϕ instead. Finally, we write π |= ϕ if π0 ∈ [[ϕ]].

Lemma 2.1 For every closed ϕ ∈ µTL, there is a closed ϕ ∈ µTL s.t. for all

paths π of all LTSs T : π |= ϕ iff π 6|= ϕ.

Proof. The complement ϕ′ can inductively be constructed using complemen-

tation closure of atomic propositions, deMorgan’s laws and the rules ψ := ψ,

©ψ := ©ψ, µX.ψ(X) := νX.ψ(X), and νX.ψ(X) := µX.ψ(X). ✷

We also allow ourselves to write ¬ϕ instead of ϕ.

Approximants of a formula σX.ϕ w.r.t. a linear time structure π and an
environment ρ : V → 2Pos(π) are defined for every i ∈ N as usual:

X0
ρ :=

{

∅ for σ = µ

Pos(π) for σ = ν
X i+1

ρ = [[ϕ]]ρ[X 7→Xi
ρ]

The following is a standard results about fixpoint logics. It follows immedi-
ately from the Knaster-Tarski Theorem and the fact that the semantics of a
formula with a free variable is a monotone function on the subset lattice of
states on a path.

Lemma 2.2 For all ϕ ∈ µTL and environment ρ we have:

[[µX.ϕ]]ρ ≡
⋃

i∈N

X i
ρ , [[νX.ϕ]]ρ ≡

⋂

i∈N

X i
ρ

3

Jehle, Johannsen, Lange, Rachinsky

We say that X depends on Y in ϕ, written Y ≺ϕ X, if Y is free in fpϕ(X).
We write ≤ϕ for the reflexive-transitive closure of ≺ϕ. The alternation depth
ad(ϕ) of ϕ is n if there is a maximal chain X0 ≤ϕ . . . ≤ϕ Xn with consecutive
variables having different fixpoint types. Let µTLk := {ϕ ∈ µTL | ad(ϕ) ≤
k}.

Proposition 2.3 [16,8] Every closed ϕ ∈ µTL is equivalent to a closed

ϕ′ ∈ µTL0.

The translation presented in [8] from a µTL formula ϕ yields a µTL0 formula
of size O(|ϕ| · 24·ad(ϕ)).

2.2 Symbolic Representations

Propositional Logic over a set V of propositional variables is the closure of V
under the boolean connectives ¬, ∨, and consequently also ∧, →, etc. Here
we assume a finite LTS T = (S,−→, I, S0) to be given symbolically, i.e., by
propositional formulas

• fstart : B
n → B with fstart(x̄) = tt iff x̄ ∈ S0,

• fq : B
n → B for every q ∈ P with fq(x̄) = tt iff x̄ ∈ I(q),

• ftrans : B
2·n → B with ftrans(x̄, ȳ) = tt iff x̄ −→ ȳ.

where n := ⌈log |S|⌉. I.e. every state is identified by a unique number in
binary coding.

A formula is in conjunctive normal form (CNF), if it is of the form C1 ∧
. . . ∧ Cm, where each Ci is a clause, i.e., a disjunction a1 ∨ . . . ∨ ak of literals
aj, i.e., each aj is a variable x or negated variable ¬x.

Most SAT solvers expect that the input formula is given in CNF. Our
translation as defined below produces arbitrary formulas, but it is well-known
that such formulas can be translated into CNF with only a linear blow-up in
size and a linear number of additional variables.

3 µTL vs. LTL

Formulas of LTL are built from atomic propositions using the boolean oper-
ators ∧, ∨ and ¬, as well as the temporal operators © (next) and U (until)
with their usual semantics [10].

Lemma 3.1 Every LTL-definable property is also definable in µTL0.

Proof. The translation is easy and well-known. The only interesting case is
that of the until operator which is translated as ϕUψ ≡ µX.ψ ∨ (ϕ ∧©X).✷

It follows that µTL model checking over labelled transition systems is also
PSPACE-hard [11] where the size of the input is the number of states in
explicit representation. In fact, it is also PSPACE-complete [15].

4

Jehle, Johannsen, Lange, Rachinsky

Proposition 3.2 [1] A language is ω-regular iff it is µTL-definable.

Together with Proposition 2.3 we obtain that µTL0 is already capable of defin-
ing all ω-regular properties.

In the following, we will give a few examples of properties that are either
µTL- but not LTL-definable, or that can be written down more succinctly in
µTL.

Example 1 “Formula ψ holds on every even state of a path” is not LTL-
definable, but can be expressed in µTL:

ϕeven := νX.ψ ∧©©X

Example 2 Suppose we have a set Q = {q0, . . . , qn−1} of atomic propositions
and require them to occur repeatedly in this order. This can be done in µTL
with the following formula of size linear in n.

ϕ := νX.q0 ∧©(q1 ∧©(q2 ∧ . . .©(qn ∧©X) . . .))

The property is still star-free, hence, LTL definable. But note that proposi-
tions do not exclude each other. Thus, an equivalent LTL formula would have
to assert the label of the next state in accordance with the labels of the last
n states – for every starting point in the order q0, . . . , qn−1. Hence, its size
would be quadratic in n.

Example 3 The next formula describes the capacity property of a bounded
message buffer of size n. A word w ∈ {push, pop, nop}ω satisfies βn if for every
prefix v of w, the difference between the numbers of occurrences of push and
pop in v is between 0 and n. This is also a star-free property, but for growing
n it occurs arbitrarily high in the dot-depth hierarchy of star-free languages
[14], and thus it is notoriously hard to formalize in LTL. The formula βn is
ϕ0, where ϕi is inductively defined as follows.

ϕ0 := νX0.(push → ©ϕ1) ∧ ¬pop ∧ (nop → ©X0)

ϕi := νXi.(push → ©ϕi+1) ∧ (pop → ©Xi−1) ∧ (nop → ©Xi) if 1 ≤ i < n

ϕn := νXn.¬push ∧ (pop → ©Xn−1) ∧ (nop → ©Xn)

The size of βn is obviously linear in n, whereas only exponential size LTL
formulas specifying this property are known [12].

4 A Bounded Semantics for µTL

Assume an LTS T = (S,−→, I, S0) to be fixed and of finite size. Every path
through T starting with a state in S0 induces a linear time structure π.

Definition 1 A path π of T is called a (k, ℓ)-loop for ℓ ≤ k ∈ N if πk+1+i =
πℓ+i for all i ∈ N.

5

Jehle, Johannsen, Lange, Rachinsky

Note that if ϕ is satisfied by a path of a finite transition system (|S| < ∞),
then it is already satisfied by a path which is a (k, ℓ)-loop for some ℓ ≤ k ≤ |S|.
This is a consequence of Proposition 3.2.

Definition 2 Given a k ∈ N, a path π of T and an environment ρ : V →
Pos(π), we define the k-bounded semantics [[ϕ]]kρ by distinguishing two cases:

Case 1, π is a (k, ℓ)-loop for some ℓ ≤ k: Then the bounded semantics does
not differ from the unbounded semantics of Section 2, i.e. we define

[[ϕ]]kρ := [[ϕ]]ρ

Case 2, π is not a (k, ℓ)-loop for any ℓ ≤ k: Then we define

[[q]]kρ := I(q) ∩ Posk(π)

[[X]]kρ = ρ(X) ∩ Posk(π)

[[ϕ ∨ ψ]]kρ := [[ϕ]]kρ ∪ [[ψ]]kρ

[[ϕ ∧ ψ]]kρ := [[ϕ]]kρ ∩ [[ψ]]kρ

[[©ϕ]]kρ := {πi | i < k and πi+1 ∈ [[ϕ]]kρ}

[[µX.ϕ]]kρ :=
⋂

{T ⊆ Posk(π) and [[ϕ]]kρ[X 7→T] ⊆ T}

[[νX.ϕ]]kρ := ∅

As for the unbounded case, we define bounded approximants for the iterative
evaluation of the bounded semantics of fixpoint formulas.

Definition 3 Bounded approximants for least fixpoint formulas µX.ϕ, a k ∈
N, a path π and environment ρ are defined for all i ∈ N as

Xk,0
ρ := ∅ , Xk,i+1

ρ := [[ϕ]]k
ρ[X 7→X

k,i
ρ]

For greatest fixpoint formulas, bounded approximants depend on the type of

the underlying path. If π is a (k, ℓ)-loop for some ℓ ≤ k then we define

Xk,0
ρ := Posk(π) , Xk,i+1

ρ := [[ϕ]]k
ρ[X 7→X

k,i
ρ]

Otherwise, we set Xk,i
ρ := ∅ for all i ∈ N.

The following lemmas form the basis for the correctness of the reduction in the
next section. Lemma 4.1 expresses the monotonicity of the bounded semantics,
and Lemma 4.2 states that the bounded approximants really approximate
the bounded semantics. They are proved by simultaneous induction on the
structure of µTL formulas, in a way similar to the corresponding statements
for the unbounded semantics.

Lemma 4.1 For all k ∈ N, all X ∈ V, all ϕ ∈ µTL, all paths π, all environ-

ments ρ and all P ⊆ Q ⊆ Posk(π) we have: [[ϕ]]kρ[X 7→P] ⊆ [[ϕ]]kρ[X 7→Q].

6

Jehle, Johannsen, Lange, Rachinsky

Lemma 4.2 For all k ∈ N, all X ∈ V, all environments ρ, all ϕ ∈ µTL and

all paths π we have: [[µX.ϕ]]kρ =
⋃

i∈N

Xk,i
ρ and [[νX.ϕ]]kρ =

⋂

i∈N

Xk,i
ρ .

The following lemma states that the bounded semantics is an under-approx-
imation of the unbounded semantics. This entails that any counterexample
found by bounded model checking is an actual counterexample to the checked
specification.

Lemma 4.3 For all ϕ ∈ µTL, all environments ρ, all k ∈ N and all paths π

we have: [[ϕ]]kρ ⊆ [[ϕ]]ρ.

Proof. The only interesting case is the one of ϕ being µX.ψ, and the path π
is not a (k, ℓ)-loop for any ℓ. For this case, we prove by a side induction on i
that Xk,i

ρ ⊆ X i
ρ for all i ∈ N, from which the lemma follows by Lemmas 4.2

and 2.2. The induction basis for the claim is trivial. For the induction step,
note that

Xk,i+1
ρ = [[ψ]]kρ[X 7→Xk,i] ⊆ [[ψ]]

ρ[X 7→X
k,i
ρ] ⊆ [[ψ]]ρ[X 7→Xi

ρ] = X i+1
ρ

where the first inclusion follows by the main induction hypothesis, and the
second one by the side induction hypothesis and monotonicity. ✷

The next lemma shows that the bounded semantics is monotone in the bound
k. This entails that by increasing the bound, one does not lose any counterex-
amples that would have been found with a smaller bound.

Lemma 4.4 For all k ∈ N, all ϕ ∈ µTL, all environments ρ and all paths π

we have: [[ϕ]]kρ ⊆ [[ϕ]]k+1
ρ .

Proof. The only non-trivial case is the one of π not being a (k + 1, ℓ)-loop
for any ℓ ≤ k+1. Again, the proof is by induction on ϕ. The only interesting
case is ϕ = µX.ψ, where we prove by side induction on i that Xk,i

ρ ⊆ Xk+1,i
ρ ,

from which the claim follows by Lemma 4.2. For i = 0 this is trivial again,
and the inductive step follows by

Xk,i+1
ρ = [[ψ]]k

ρ[X 7→X
k,i
ρ]

⊆ [[ψ]]k+1

ρ[X 7→X
k,i
ρ]

⊆ [[ψ]]k+1

ρ[X 7→X
k+1,i
ρ]

= Xk+1,i+1
ρ

where the first inclusion follows by the main induction hypothesis, and the
second one by the side induction hypothesis and Lemma 4.1. ✷

Lemma 4.5 For any σ ∈ {µ, ν}, any formula ϕ, environment ρ, and k ∈ N

we have [[σX.ϕ]]kρ = Xk,k
ρ .

Proof. This is a consequence of Lemma 4.2, since the chain of bounded ap-
proximants must become stationary after at most k steps. The reason is that
all bounded approximants are subsets of Posk(π), and |Posk(π)| = k. ✷

By use of this lemma, for a fixpoint formula ϕ containing m nested fixpoint
operators, [[ϕ]]k can be computed in km steps. For alternation-free formulas in

7

Jehle, Johannsen, Lange, Rachinsky

µTL0 one can do better. We present the construction for least fixpoints, for
greatest fixpoints it is completely analogous.

Let ϕ = µX.ψ be a closed fixpoint formula, and let X = X1, . . . , Xr be
those variables in ϕ that depend on X, i.e., X ≤ϕ Xi for i = 1, . . . , r. Since
ϕ ∈ µTL0, all the variables Xi are of type µ. Now ϕ is transformed into a
system of equations

X1 = ψ1(X1, . . . , Xr)
...

Xr = ψr(X1, . . . , Xr)

(1)

where the formulas ψj contain no fixpoint subformulas that depend on the
variables X1, . . . , Xr, i.e., every fixpoint subformula of ψj(X1, . . . , Xr) is a
subformula of some closed fixpoint subformula of ψj(X1, . . . , Xr). The trans-
lation is obtained as follows: let

fpϕ(Xi) = µXi.ψi(X1, . . . , Xi, µY1.θ1, . . . , µYs.θs)

containing free variables among X1, . . . , Xi−1, where the subformulas µYj.θj

for Yj among Xi+1, . . . , Xr are those outermost fixpoint subformulas of ψi that
contain any free variables from X1, . . . , Xi. This formula yields the equation
Xi = ψi(X1, . . . , Xi, Y1, . . . , Ys) in (1).

For the system of equations (1), the bounded simultaneous approximants

X
k,(j)
i for 1 ≤ i ≤ r and j ∈ N are inductively defined as follows:

X
k,(0)
i = ∅ X

k,(j+1)
i = [[ψi(X1, . . . , Xr)]]

k

ρj
(2)

where ρj is the environment that maps each variable Xh to X
k,(j)
h , for 1 ≤ h ≤

r.

Lemma 4.6 For a closed fixpoint formula µX.ϕ as above, [[µX.ϕ]]k = X
k,(kr)
1 .

Proof. The fixpoint of the simultaneous iteration (2) is the same as [[µX.ϕ]]k

by Békic̀’ Theorem [2]. Moreover, (2) reaches its fixpoint after at most k · r
iterations, since there are r subsets of Posk(π) being computed, and in the
worst case, in each iteration only one of the sets increases by one element. ✷

5 The Reduction to SAT

For a transition system T with 2n states, represented symbolically by boolean
formulas as described in Section 2.2, a formula ϕ ∈ µTL0 and a k ∈ N we
define a boolean formula 〈〈 T , ϕ 〉〉k in the following variables:

• the path variables s̄i = si,1, . . . , si,n for 1 ≤ i ≤ k, coding the i-th state on
a path.

8

Jehle, Johannsen, Lange, Rachinsky

• auxiliary variables v(X)i for every second-order variable X and 1 ≤ i ≤ k.
These variables will not occur in the final formula 〈〈 T , ϕ 〉〉k, they are only
used during the construction as placeholders for free variables in subformu-
las.

• the approximant variables a(X, j)k
i and a(X, j)k,ℓ

i for every second-order
variable X and 1 ≤ i, ℓ ≤ k and j ∈ N. These variables express that state i
is in the bounded approximant Xk,(j).

First, we define a formula 〈〈 T 〉〉k saying that the path variables s̄1, . . . , s̄k

actually encode a path in T by

〈〈 T 〉〉k := fstart(s̄1) ∧
k−1
∧

i=1

ftrans(s̄i, s̄i+1) .

Next, as usual we define formulas to distinguish between the cases where the
path is a (k, ℓ)-loop for ℓ ≤ k, and where it is not, by

Loopk,ℓ := ftrans(s̄k, s̄ℓ) ¬Loopk :=

k
∧

i=1

¬Loopk,i

and using these, we define the translation by

〈〈 T , ϕ 〉〉k := 〈〈 T 〉〉k ∧
(

(

¬Loopk ∧ 〈〈ϕ 〉〉k
)

∨
k

∨

ℓ=1

(

Loopk,ℓ ∧ 〈〈ϕ 〉〉k,ℓ
)

)

.

The formula 〈〈ϕ 〉〉k that actually encodes ϕ in the case of a non-loop is defined
as 〈〈ϕ 〉〉k1 ∧ Defs(ϕ)k, where the formulas 〈〈ψ 〉〉ki for subformulas ψ of ϕ and
1 ≤ i ≤ k express that the ith state satisfies ψ. For formulas without fixpoint
operators, these are inductively defined by:

〈〈 q 〉〉ki := fq(s̄i)

〈〈X 〉〉ki := v(X)i

〈〈ϕ ∨ ψ 〉〉ki := 〈〈ϕ 〉〉ki ∨ 〈〈ψ 〉〉ki
〈〈ϕ ∧ ψ 〉〉ki := 〈〈ϕ 〉〉ki ∧ 〈〈ψ 〉〉ki

〈〈©ϕ 〉〉ki :=

{

〈〈ϕ 〉〉ki+1 if i < k

ff otherwise

Next, we define the translation for a closed greatest fixpoint formula as the
constant ff,

〈〈 νX.ψ 〉〉ki := ff ,

and for a closed least fixpoint formula as the approximant variable

〈〈µX.ψ 〉〉ki := a(X, kr)k
i ,

9

Jehle, Johannsen, Lange, Rachinsky

where r is the number of second-order variables Y in µX.ψ with X ≤ϕ Y .

Note that in a fixpoint formula, the bound variable can occur several times.
Therefore a straightforward translation of the approximants by syntactic un-
folding would lead to an exponential blowup. To prevent this, we use the ap-
proximant variables to abbreviate the approximants, and the formula Defs(ϕ)k

takes care of their proper interpretation. It is defined as the conjunction of
the defining formulas Def (ψ)k, over all subformulas ψ of ϕ that are closed
least fixpoint formulas.

Another exponential blowup would occur if nested fixpoints were translated
straightforwardly inside out, since the unfolding of a formula with m nested
fixpoints would produce km subformulas. Therefore we use the transformation
of a closed least fixpoint subformula ψ into a system of r equations (1), as
described at the end of Section 4:

X1 = ψ1(X1, . . . , Xr)
...

Xr = ψr(X1, . . . , Xr)

The formula Def (ψ)k describes the evaluation of this system of equations by
the simultaneous approximants (2) by giving definitions for the corresponding
approximant variables. I.e., Def (ψ)k is the conjunction of the equivalences 1

a(X, s)k
i ↔ F (Xj, s)

k
i over all 1 ≤ j ≤ r, 1 ≤ s ≤ kr and 1 ≤ i ≤ k, where

• F (Xj, 1)k
i is the translation 〈〈ψj(X1, . . . , Xr) 〉〉

k
i with the variables v(Xh)

k
g

for 1 ≤ h ≤ r and 1 ≤ g ≤ k replaced by ff, and

• F (Xj, s)
k
i for s > 1 is 〈〈ψj(X1, . . . , Xr) 〉〉

k
i with the variables v(Xh)

k
g replaced

by a(Xh, s− 1)k
g , for 1 ≤ h ≤ r and 1 ≤ g ≤ k.

Similarly, the translation 〈〈ϕ 〉〉k,ℓ of ϕ in the case of a loop is defined as
〈〈ϕ 〉〉k,ℓ

1 ∧ Defs(ϕ)k,ℓ, where the inductive definition of the formulas 〈〈ψ 〉〉k,ℓ
i

differs only in the clause for ©ψ, which becomes:

〈〈©ϕ 〉〉k,ℓ
i :=

{

〈〈ϕ 〉〉k,ℓ
i+1 if i < k

〈〈ϕ 〉〉k,ℓ
ℓ otherwise

For both closed least and greatest fixpoint formulas we now define the trans-
lation by

〈〈 σX.ψ 〉〉k,ℓ
i := a(X, kr)k,ℓ

i ,

where like above, r is the number of second-order variables Y in σX.ψ with
X ≤ϕ Y .

The formula Defs(ϕ)k,ℓ is the conjunction of the formulas Def (ψ)k,ℓ over
all closed least and greatest fixpoint subformulas of ϕ. For such a subfor-

1 If the formulas are transformed into CNF, these equivalences need not be written, but are
implicitly produced by the transformation. One only needs to identify the variable a(X, s)k

i

with the new variable abbreviating the formula F (Xj , s)
k
i .

10

Jehle, Johannsen, Lange, Rachinsky

n Var Cls Red SAT

22 6 k 42 k 0.24 0.09
32 13 k 97 k 0.86 1.87
42 23 k 191 k 2.88 4.49
52 36 k 298 k 6.29 26.83
62 52 k 435 k 12.13 3.00
72 71 k 647 k 21.10 21.01
82 92 k 847 k 35.09 107.17
92 116 k 1059 k 54.94 138.97

n Var Cls Red SAT

102 143 k 1322 k 91.29 22.05
112 173 k 1597 k 124.44 213.27
122 207 k 1915 k 178.86 462.75
132 242 k 2438 k 253.42 421.27
142 280 k 2831 k 338.51 1167.54
152 320 k 3229 k 469.33 630.07
162 366 k 3699 k 583.69 10.78
172 409 k 4128 k 805.48 865.44

Fig. 1. The even b / odd c example.

mula, written as an equation system in the variables X1, . . . , Xr, the for-
mula Def (ψ)k,ℓ is defined exactly as Def (ψ)k above, only that for a variable
of type ν, the defining formulas for the first approximant variables become
a(Xj, 1)k,ℓ

i ↔ F (Xj, 1)k,ℓ
i , where in this case F (Xj, 1)k,ℓ

i is the translation

〈〈ψj(X1, . . . , Xr) 〉〉
k,ℓ
i with the variables v(Xh)

k,ℓ
g for 1 ≤ h ≤ r and 1 ≤ g ≤ k

replaced by tt.

The number of variables in and the size of the translation is measured in
the numbers n, k, the size of the input formula s and the number of second-
order variables v. They are easily estimated, and are as follows:

Proposition 5.1 The formula 〈〈 T , ϕ 〉〉k contains O(v2k3+kn) variables, and

is of size O(v2k3sn).

Even though the number of variables produced by our translation is rather
large, in particular regarding the cubic dependence on k, this might not be
too problematic, since the approximant variables occur in k+ 1 disjoint parts
of the formulas, each containing only O(k2) of them.

Finally, we can easily observe the correctness of our translation, which is
obvious from the definition for all cases except the fixpoint formulas. For the
latter the correctness follows from Lemma 4.6.

Proposition 5.2 The formula 〈〈 T , ϕ 〉〉k is satisfiable iff there is a path π in

T starting at an initial state, and for which π0 ∈ [[ϕ]]k.

6 Experimental Results

The algorithm presented here is implemented as part of the verification tool µ-
Sabre that is being developed at LMU Munich. The program is implemented
in the lazy functional language Haskell using the Glasgow Haskell

Compiler 6.2.2, with the exception of a small part of the program, deal-
ing with linking of the SAT solver, that was implemented in C. The SAT
solver used is version 2004.5.13 of zChaff [9].

The tests were carried out on a machine with two Intel r© XeonTM 2.4 GHz
processors and 4GB of RAM. The second processor remained unused.

11

Jehle, Johannsen, Lange, Rachinsky

In a first test series we consider the property “there is a path with a b

at an even position and a c at an odd position” on a family {Tn | n ∈ N}
of transition systems, s.t. Tn has got n states. The transitions between these
states and their labels are as follows.

a aa a b c

The only starting state is the leftmost. The property is written in µTL as
(µX.b∨©©X)∧ (µY.© c∨©©Y). It may not be an interesting property
but we include it here because it cannot be formalised in LTL, c.f. Example 1.

The running times of our reduction (Red) and the SAT solver (SAT) are
presented in Figure 1. The time unit is seconds. We only present satisfiable
instances, i.e. those of even n. The table also contains the number of proposi-
tional variables (Var) and the number of clauses (Cls) in the resulting formulas
– truncated down to multiples of 1000 in order to save space.

Our other tests use a transition system Bn modelling a message buffer of
size n, holding messages that are single bits. Every state in Bn has 2n+3 bits:
The first two are the opcode for the next operation. The third bit is the output
of the previous operation; its value is only specified in states following a pop

operation. The remaining 2n bits represent the n buffer cells, each cell being
represented by one bit indicating whether the cell is occupied, and the other
being the value stored in the cell. The value of the second bit is unspecified
for unoccupied cells.

The boolean formulas fstart and ftrans are hand-coded, with fstart saying
that the buffer is initially empty, and ftrans specifying the changes in the buffer
depending on the opcode, e.g., one disjunct of ftrans(x, y) is

¬x1 ∧ ¬x2 ∧
∧

4≤i≤2n+3

(xi ↔ yi)

stating that a nop (having opcode 00) does not change the buffer content.

We test the property ¬βn−1 of Example 3 on Bn in order to have a sat-
isfiable example. The minimal counterexample showing that βn−1 is violated
is a sequence of n push operations, thus in our second experiment we tested
whether Bn |=n ¬βn, for various n. The results are shown in Figure 2. Again,
the time unit is seconds.

In the third experiment, in order to see the dependence of the performance
on the bound k, we test Bn |=k ¬βn−1 for various values of k ≥ n, for fixed
n = 12. The results are presented in Figure 3.

The example formula βn was chosen for two reasons: First, as mentioned
above, the property expressed can probably not easily and succinctly be stated
in LTL. Second, it fully utilizes the syntactic possibilities of alternation-free
µTL, since βn has n nested fixpoints, and, due to the presence of the nop

operation, each bound variable (except for Xn) occurs twice.

12

Jehle, Johannsen, Lange, Rachinsky

n Var Cls Red SAT

6 15 k 55 k 0.35 0.24
7 28 k 98 k 0.75 3.47
8 48 k 163 k 1.68 2.67
9 75 k 256 k 3.56 4.71
10 114 k 384 k 7.31 11.18
11 165 k 554 k 14.36 13.34
12 231 k 775 k 27.20 27.16
13 316 k 1056 k 49.56 39.64

n Var Cls Red SAT

14 423 k 1407 k 89.46 56.11
15 554 k 1840 k 158.40 95.49
16 713 k 2364 k 253.85 188.07
17 905 k 2994 k 392.49 146.14
18 1133 k 3741 k 608.33 157.17
19 1401 k 4620 k 947.79 293.46
20 1715 k 5646 k 1362.74 226.30
21 2078 k 6833 k 2072.00 810.71

Fig. 2. The buffer example with k = n

k Var Cls Red SAT

12 231 k 775 k 27.09 27.02
14 309 k 1030 k 49.92 41.57
16 398 k 1321 k 86.66 42.10
18 498 k 1648 k 145.22 73.22
20 610 k 2011 k 218.77 66.15
22 732 k 2409 k 308.51 178.23
24 866 k 2843 k 425.32 380.42

k Var Cls Red SAT

26 1010 k 3312 k 590.76 34.09
28 1166 k 3818 k 780.84 182.86
30 1333 k 4359 k 1036.56 233.37
32 1511 k 4935 k 1317.30 216.08
34 1701 k 5548 k 1659.06 161.38
36 1901 k 6196 k 2171.02 718.25
38 2113 k 6880 k 2929.20 409.74

Fig. 3. The buffer example with n = 12.

References

[1] H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model
and its temporal logic. In Conf. Record of the 13th Annual ACM Symp. on

Principles of Programming Languages, POPL’86, pages 173–183. ACM, 1986.

[2] H. Békic̀. Programming Languages and Their Definition, Selected Papers,
volume 177 of LNCS. Springer, 1984.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In R. Cleaveland, editor, Proc. 5th Int. Conf. on Tools and

Algorithms for the Analysis and Construction of Systems, TACAS’99, volume
1579 of LNCS, Amsterdam, NL, Mar. 1999.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. Information and

Computation, 98(2):142–170, June 1992.

[5] E. Clarke, D. Kroening, O. Strichman, and J. Ouaknine. Completeness and
complexity of bounded model checking. In Proc. 5th Int. Conf. on Verification,

Model Checking, and Abstract Interpretation, VMCAI’04, volume 2937 of
LNCS, pages 85–96. Springer, 2004.

[6] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The temporal analysis of fairness.
In Proc. 7th Symp. on Principles of Programming Languages, POPL’80, pages
163–173. ACM, Jan. 1980.

13

Jehle, Johannsen, Lange, Rachinsky

[7] H. W. Kamp. On tense logic and the theory of order. PhD thesis, Univ. of
California, 1968.

[8] M. Lange. Weak automata for the linear time µ-calculus. In R. Cousot,
editor, Proc. 6th Int. Conf. on Verification, Model Checking and Abstract

Interpretation, VMCAI’05, volume 3385 of LNCS, pages 267–281, 2005.

[9] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient sat solver. In Proceedings of the 38th Design

Automation Conference, DAC 2001, pages 530–535, 2001.

[10] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations

of Computer Science, FOCS’77, pages 46–57, Providence, RI, USA, Oct. 1977.
IEEE.

[11] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the Association for Computing Machinery, 32(3):733–749,
July 1985.

[12] A. P. Sistla, E. M. Clarke, N. Francez, and A. R. Meyer. Can message buffers be
axiomatized in linear temporal logic? Information and Control, 63(1-2):88–112,
1984.

[13] W. Thomas. Star-free regular sets of ω-sequences. Information and Control,
42(2):148–156, Aug. 1979.

[14] W. Thomas. A concatenation game and the dot-depth hierarchy. In E. Börger,
editor, Computation Theory and Logic, volume 270 of Lecture Notes in

Computer Science, pages 415–426. Springer, 1987.

[15] M. Y. Vardi. A temporal fixpoint calculus. In ACM, editor, Proc. Conf. on

Principles of Programming Languages, POPL’88, pages 250–259, NY, USA,
1988. ACM Press.

[16] M. Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, Nov. 1994.

14

	Introduction
	Preliminaries
	The Linear Time -Calculus TL
	Symbolic Representations

	TL vs. LTL
	A Bounded Semantics for TL
	The Reduction to SAT
	Experimental Results
	References

