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AbstractIt has been observed empiri
ally that 
lause learning does not sig-ni�
antly improve the performan
e of a satis�ability solver when re-stri
ted to learning short 
lauses only. This experien
e is supportedby a lower bound theorem: an unsatis�able set of 
lauses, 
laiming theexisten
e of an ordering of n points without a maximum element, 
anbe solved in polynomial time when learning arbitrary 
lauses, but it isshown to require exponential time when learning only 
lauses of sizeat most n/4. The lower bound is of the same order of magnitude asa known lower bound for ba
ktra
king algorithms without any 
lauselearning. It is shown by proving lower bounds on the proof length ina 
ertain resolution proof system related to 
lause learning.

1 IntroductionMost 
ontemporary SAT solvers are based on extensions of the basi
 ba
k-tra
king pro
edure known as the DLL-algorithm [6℄. One of the most su
-
essful of these extensions is 
lause learning [11℄, whi
h works roughly asfollows: When the ba
ktra
king algorithm en
ounters a 
on
i
t, i.e., a 
lausefalsi�ed by the 
urrent partial assignment α, then a sub-assignment α ′ of αthat suÆ
es to 
ause this 
on
i
t is 
omputed. This sub-assignment α ′, thereason for the 
on
i
t, 
an then be stored in form of a new 
lause C addedto the formula, viz. the unique largest 
lause C falsi�ed by α ′. This waythe algorithm 
an later ba
ktra
k earlier when again a partial assignmentextending α ′ o

urs in another bran
h of the sear
h tree, sin
e then theadded 
lause C be
omes falsi�ed and thus 
auses a 
on
i
t.When 
lause learning is implemented, a heuristi
 is needed to de
idewhi
h learnable 
lauses to a
tually keep in memory, as learning a large1



number of 
lauses leads to ex
essive memory usage, whi
h slows the algo-rithm down rather than helping it. An obvious simple heuristi
 is to learnonly short 
lauses, i.e., to set a threshold (possibly depending on the input
lauses), and to keep in memory only 
lauses whose size does not ex
eed thethreshold.Resear
hers who have experimented with heuristi
s for 
lause learning,e.g. the author himself or Letz [9℄, have experien
ed that this simple heuris-ti
 is not very helpful, i.e., learning only short 
lauses does not signi�
antlyimprove the performan
e of a DLL algorithm for hard formulas The presentwork aims at supporting this experien
e with a rigorous mathemati
al anal-ysis in the form of a lower bound theorem.In earlier work [5℄, we have shown su
h a lower bound for the well-knownpigeonhole prin
iple 
lauses PHPn. These formulas require time 2Ω(nlogn)to solve when learning 
lauses of width up to n/2 only, whereas they 
an besolved in time 2O(n) when learning arbitrary 
lauses. While this examplein prin
iple shows the weakness of the heuristi
, it is not fully satisfa
tory,sin
e even with arbitrary learning, the time required is exponential in n, itjust takes still more time { about n! { to solve when learning short 
lausesonly.Here we provide another example using a set of 
lauses Ordn based onthe ordering prin
iple. These formulas 
an be solved in polynomial timewhen learning arbitrary 
lauses, but require exponential time to solve whenlearning 
lauses of size up to n/4 only. This lower bound is asymptoti
allythe same as the known exponential lower bound [4℄ on the time for solvingOrdn by DLL algorithms without 
lause learning.The lower bounds on the run-time are shown by proving the same lowerbounds on the length of refutations in a 
ertain propositional proof system.The relationship of this proof system to the DLL algorithm with 
lauselearning has been established in several earlier works [5, 7℄.
2 PreliminariesA literal is a variable x or a negated variable �x, the former are positiveliterals and the latter negative literals. A 
lause is a disjun
tion C =

a1∨. . .∨ak of literals ai, its width is w(C) = k, the number of literals in it.We identify a 
lause with the set of literals o

urring in it, even though for
larity we still write it as a disjun
tion. A 
lause is negative if it 
ontainsno positive literals. A formula in 
onjun
tive normal form (CNF) is a
onjun
tion F = C1 ∧ . . . ∧Cm of 
lauses, it is usually identi�ed with the setof 
lauses {
C1, . . . , Cm

}. 2



We 
onsider refutation systems for formulas in CNF based on the reso-lution rule, whi
h are well-known to be strongly related to DLL algorithms.The proof systems under 
onsideration have two inferen
e rules: the weak-ening rule, whi
h allows to 
on
lude a 
lause D from any 
lause C with
C ⊆ D, and the resolution rule, whi
h allows to infer the 
lause C∨D fromthe two 
lauses C ∨x and D ∨�x, provided that the variable x does not o

urin either C or D, pi
torially:

C ∨ x D ∨ �x
C ∨ DWe say that the variable x is eliminated in this inferen
e.A resolution derivation of a 
lause C from a CNF-formula F is a dire
teda
y
li
 graph (dag) with a unique sink, in whi
h every node has in-degreeat most 2, and with every node ν labeled with a 
lause Cν su
h that:1. The sink is labeled with C.2. If a node ν has one prede
essor ν ′, then Cν follows from Cν′ by theweakening rule.3. If a node ν has two prede
essors ν1, ν2, then Cν follows from Cν1

and
Cν2

by the resolution rule.4. A sour
e node ν is labeled by a 
lause C in F.The size of a resolution derivation is the number of nodes in the dag. Aresolution refutation of F is a resolution derivation of the empty 
lausefrom F. We 
all a derivation tree-like if the underlying unlabeled dag is atree, otherwise we may 
all it dag-like for emphasis.Note that the weakening rule is redundant in tree-like and dag-like res-olution refutations: its uses 
an be eliminated from a refutation withoutin
reasing the size. This may not be the 
ase for the proof system we de�nebelow.A resolution derivation is 
alled regular if on every path through thedag, ea
h variable is eliminated at most on
e. Regularity is not an essen-tial restri
tion on tree-like resolution sin
e minimal tree-like refutations arealways regular [13℄, but regular dag-like refutations 
an ne
essarily be ex-ponentially longer than general ones [1℄.Regular tree-like resolution exa
tly 
orresponds to the DLL algorithmby the following well-known 
orresponden
e: the run of a DLL-algorithm onan unsatis�able formula F forms a regular, tree-like resolution refutation of
F without use of the weakening rule. Sin
e the weakening rule is redundantin tree-like resolution proofs, the 
onverse dire
tion holds as well.3



The proof system studied in this work are resolution trees with lemmas(RTL), whi
h are de�ned as follows: An RTL-derivation of C from F isde�ned like a tree-like resolution derivation of C from F, but here a nodewith in-degree 2 has a distinguished left and right prede
essor. Then the
lause 4 of the de�nition liberalized to:4a. A sour
e node ν is labeled by a 
lause D in F, or by a 
lause C labellingsome node ν ′ ≺ ν. In the latter 
ase we 
all C a lemma.Here ≺ denotes the post-ordering of the tree, i.e., the order in whi
h thenodes of the tree are visited by a post-order traversal, whi
h at a node νwith two prede
essors �rst re
ursively traverses the left subtree, i.e., thesubtree rooted at the left prede
essor of ν, then re
ursively traverses theright subtree, and then visits ν itself.An RTL-derivation is an RTL(k)-derivation if every lemma C is of width
w(C) ≤ k. An RTL-derivation of the empty 
lause from F is an RTL-refutation of F. Note that RTL is equivalent to dag-like resolution andRTL(0) is equivalent to tree-like resolution.A subsystem WRTI of RTL has been des
ribed by Buss et al. [5℄ whi
h
orresponds to a general formulation of the DLL algorithm with 
lause learn-ing. This system WRTI imposes the regularity restri
tion on derivations,and does not in
lude the full weakening rule, but in
orporates some amountof weakening into a generalized resolution inferen
e rule, the so-
alled w-resolution rule. It also restri
ts further the stru
ture of sub-derivations of
lauses that 
an be used as lemmas, whi
h have to be derived by input res-olution derivations. W.r.t. the length of proofs, WRTI lies between regularand general dag-like resolution.The size of a refutation of an unsatis�able formula F in WRTI has beenshown [5℄ to be polynomially related to the runtime of a s
hemati
 algorithmDLL-L-UP on F. This s
hema DLL-L-UP subsumes all 
ommonly used
lause learning strategies, in
luding �rst-UIP [11℄, all-UIP, de
ision [15℄and rel-sat [2℄, but is slightly more general than a DLL algorithm with 
lauselearning by being non-greedy in the sense that it 
an 
ontinue bran
hingeven after a 
on
i
t was rea
hed. In the simulation of 
lause learning byWRTI, the 
lauses learned by the algorithm are those 
lauses used as lemmasin the refutation.A di�erent system with similar properties was des
ribed by Hertel et al.[7℄, building on earlier work of van Gelder [14℄, whi
h 
an likewise be seenas a subsystem of RTL.It follows that if an unsatis�able formula F 
an be solved by a DLL-algorithm with 
lause learning in time t, then it has an RTL-refutation ofsize polynomial in t. Moreover, if the algorithm learns only 
lauses of width4



k, then the refutation is in RTL(k). In the following we prove lower boundson the size of refutations in RTL(k), whi
h thus readily translate into lowerbounds on the runtime of DLL with width-restri
ted 
lause-learning.A 
ommon tool in proof 
omplexity is to 
onsider formulas under a par-tial assignment, 
alled restri
tion in this 
ontext. We shall need a slightlymore general notion of restri
tion in this work.Let X be a set of variables. A restri
tion with renaming is a (total)fun
tion ρ : X → X∪ {0, 1}. The fun
tion ρ is extended to literals by setting
ρ(�x) :=






1 if ρ(x) = 0

0 if ρ(x) = 1

ρ(x) if ρ(x) ∈ X .For a 
lause C in variables X, we de�ne
C⌈ρ :=






1 if ρ(a) = 1 for some a ∈ C∨

a∈C,ρ(a)6=0

ρ(a) otherwise,where the empty disjun
tion is identi�ed with the 
onstant 0. For a CNF-formula F over X, we de�ne
F⌈ρ :=






0 if C⌈ρ = 0 for some C ∈ F∧

C∈F,C⌈ρ6=1

C⌈ρ otherwise,where the empty 
onjun
tion is identi�ed with 1.Just like ordinary restri
tions, the more general renaming restri
tionspreserve proofs in most propositional proof systems. We state this fa
t hereonly for resolution.
Proposition 1. Let R be a (tree-like) resolution proof of C from F ofsize s, and ρ a restri
tion with renaming. Then there is a (tree-like)resolution proof R ′ of C⌈ρ from F⌈ρ of size at most 2s.The proposition is shown by a straightforward indu
tion along the proof
R, the proof will not be given here, as we will prove a spe
ial 
ase that wea
tually use below.In the following we just use the word restri
tion for restri
tions withrenaming, sin
e ordinary restri
tions do not o

ur in this work.
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3 The ordering principleThe ordering prin
iple expresses the fa
t that every �nite total ordering hasa maximal element. Its negation is expressed in propositional logi
 by thefollowing set of 
lauses Ordn over the variables xi,j for 1 ≤ i, j ≤ n with
i 6= j: �xi,j ∨ �xj,i for 1 ≤ i < j ≤ n (Ai,j)

xi,j ∨ xj,i for 1 ≤ i < j ≤ n (Ti,j)�xi,j ∨ �xj,k ∨ �xk,i for 1 ≤ i < j, k ≤ n with j 6= k (∆i,j,k)
∨

j∈[n]\{i}

xi,j for 1 ≤ i ≤ n (Mi)Let R be the relation on [n] given by an assignment to the variables, so that
i R j holds i� xi,j is set to 1. The 
lauses Ai,j and Ti,j state that for every iand j, either i R j or j R i holds, but not both. The 
lause ∆i,j,k state thatthere are no 
y
les of length 3 in R, whi
h modulo the �rst two families of
lauses is equivalent to R being transitive. Thus the �rst three 
lause setsstate that R is a total ordering. The 
lauses Mi then state that this orderinghas no maximal element, therefore the formula is unsatis�able.The formulas Ordn were introdu
ed by Krishnamurthy [8℄ as potentialhard example formulas for resolution, but short regular resolution refuta-tions for them were 
onstru
ted by St�almar
k [12℄.
Proposition 2. There are dag-like regular resolution refutations of Ordnof size O(n3).Note that the size of the formula Ordn is Θ(n3), so the size of theserefutations is linear in the size of the formula. A general simulation of regularresolution by WRTI [5℄ yields WRTI-refutations of Ordn of polynomial size.From these, it is straightforward to 
onstru
t a polynomial length run ofa DLL algorithm with 
lause learning on Ordn, making the bran
hing andlearning de
isions suggested by the refutation.On the other hand, the following lower bound for tree-like resolutionrefutations of Ordn was shown by Bonet and Galesi [4℄. It implies that aDLL algorithm without 
lause learning requires exponential time to solvethese formulas.
Theorem 3. Every tree-like resolution refutation of Ordn is of size
2Ω(n).More pre
isely, the lower bound proved by Bonet and Galesi is Ω(2n/6).We shall prove a larger lower bound of Ω(2n/2) below. Our main result is alower bound on the size of RTL(k)-refutations of the formulas Ordn.6



Theorem 4. For k < n/4, every RTL(k)-refutation of Ordn is of size
2Ω(n).It follows that a DLL algorithm with learning requires exponential timeto solve these formulas, when learning is restri
ted to 
lauses of width lessthan n/4.The idea of the proof is similar to that of the mentioned lower bound forthe pigeonhole prin
iple PHPn [5℄: the goal is to show that a long derivationis required to obtain a 
lause that is short enough to be used as a lemma. Toprove this, look at the �rst suÆ
iently short 
lause C, and �nd a restri
tion
ρ falsifying C. Then the derivation of C, restri
ted by ρ, is a tree-likeresolution refutation of PHPn′ for some n ′ < n, and therefore needs to belarge by a known lower bound.This strategy does not quite work here dire
tly, sin
e from Ordn short
lauses 
an be derived very qui
kly. Therefore we single out a 
lass of useful
lauses, and show that any refutation 
an be transformed so that only theseuseful 
lauses are used as lemmas, in Se
tion 5.After that, we again look at the �rst 
lause used as a lemma, and �nd arestri
tion falsifying it. Thereby we obtain a tree-like refutation of a smallerinstan
e of the ordering prin
iple, whi
h needs to be large by a knownlower bound. A 
lass of restri
tions that makes this 
onstru
tion possible isde�ned below.The argument be
omes simpler if the proof is �rst brought into a normalform that 
ontains only negative 
lauses; this is done in Se
tion 4. Finally,in Se
tion 6, everything is put together to prove the theorem.As mentioned, we need to de�ne a 
lass of restri
tions that preserve theordering prin
iple 
lauses, similar to the mat
hing restri
tions that preservethe pigeonhole prin
iple formulas, but in 
ontrast to those we require re-stri
tions with renaming. For a non-empty set S ⊆ [n] and a total ordering
≺ on S, we de�ne the ordering restri
tion ρ(S,≺) by

ρ(S,≺) : xi,j 7→






1 if i, j ∈ S and i ≺ j

0 if i, j ∈ S and j ≺ i

xs,j if i ∈ S and j /∈ S

xi,s if i /∈ S and j ∈ S

xi,j otherwise,where s ∈ S is arbitrary but �xed, e.g. s := maxS. We let σ range overordering restri
tions, and for σ = ρ(S,≺) we let |σ| := |S|.The main property of ordering restri
tions is that they preserve theordering prin
iple formulas. 7



Proposition 5. For every ordering restri
tion σ with |σ| ≥ 1,Ordn⌈σ = Ordn−|σ|+1 .Proof. We shall see that the restri
tion of every 
lause from Ordn by σ =

ρ(S,≺) with |S| ≥ 1 is again one of the 
lauses from Ordn, with indi
esfrom [n] \ S ∪ {s}. Thus after a renaming of variables we obtain the 
lausesOrdn−|S|+1.The 
lauses Ti,j, Ai,j and ∆i,j,k for i, j, k /∈ S remain una�e
ted by therestri
tion.The restri
tion by σ of the 
lauses Ti,j, where i ∈ S and j /∈ S are the
lauses Ts,j, and similarly for j ∈ S and i /∈ S. The 
lauses Ti,j⌈σ with
{i, j} ⊆ S are satis�ed. The analogous statements hold for the 
lauses Ai,j.The 
lauses ∆i,j,k⌈σ with i ∈ S and j, k /∈ S are ∆s,j,k, and similarly forthe other situations where |{i, j, k} ∩ S| = 1.The 
lauses ∆i,j,k with i, j ∈ S and k /∈ S with j ≺ i are satis�ed by σ,and similarly for the symmetri
 situations as well as for {i, j, k} ⊆ S. For
i, j ∈ S with i ≺ j, the restri
tion of ∆i,j,k by σ is As,k, and similarly for thesymmetri
 
ases.Finally, the restri
tion of Mi for i /∈ S is Mi over the smaller domain,for the maximal element i of S under ≺ it is Ms, and for other values i ∈ Sit is satis�ed.
4 Negative calculusWe now de�ne a normal form for RTL-derivations from Ordn, in form of anegative 
al
ulus NTL that uses only negative 
lauses.For a 
lause C in the variables of Ordn, we de�ne a negative 
lause CNthat is equivalent to C w.r.t. ordering restri
tions as follows:�xN

i,j := �xi,j

xN
i,j := �xj,i

CN :=
∨

a∈C

aNObserve that w(CN) ≤ w(C) for every 
lause C, but the translated 
lause
an be stri
tly smaller, e.g., (x1,2 ∨ x1,3 ∨ �x2,1)
N is �x2,1 ∨ �x3,1. The negativetranslation OrdN

n of the ordering prin
iple is the 
onjun
tion of the 
lauses:
Ai,j for 1 ≤ i < j ≤ n,

∆i,j,k for 1 ≤ i < j, k ≤ n with j 6= k, and
MN

i for 1 ≤ i ≤ n.8



It is easily seen that the negative translation 
ommutes with ordering re-stri
tions, i.e., for every 
lause C and ordering restri
tion σ we have CN⌈σ =

(C⌈σ)N. It follows from Lemma 5 and this fa
t that ordering restri
tionspreserve the negative-translated ordering prin
iple:
Corollary 6. For every ordering restri
tion σ with |σ| ≥ 1,OrdN

n⌈σ = OrdN
n−|σ|+1 .In the negative 
al
ulus NTL, the essential positive 
lauses Ti,j in theordering prin
iple are 
oded in an inferen
e rule, the negative inferen
e :

C ∨ �xi,j D ∨ �xj,i

C ∨ DAn NTL-derivation is de�ned exa
tly as an RTL-derivation, only with thenegative inferen
e repla
ing the resolution inferen
e. An NTL-derivationthat does not use any lemmas is 
alled a tree-like negative derivation. Also,an NTL-derivation is an NTL(k)-derivation if every lemma used is of widthat most k.We now provide a translation of RTL-derivations from the ordering prin-
iple 
lauses into the negative 
al
ulus that preserves the proof size and thewidth of lemmas used.
Lemma 7. If C has an RTL(k)-derivation from Ordn of size s, then CNhas an NTL(k)-derivation from OrdN

n of size at most 2s.Proof. Let R be an RTL(k)-derivation of C from from Ordn. We 
onstru
tan NTL(k)-derivation of CN of the appropriate size.For ea
h 
lause C in Ordn, the translation CN is in OrdN
n , so the 
laimholds for the axiom leaves. For the lemma leaves, we shall take 
are in the
onstru
tion that the 
lauses CN for C o

urring in R, o

ur in RN in thesame order, so the lemmas 
an be used as needed. Also note that sin
e

w(CN) ≤ w(C), the lemmas used do not ex
eed the width bound.If D is derived by a weakening inferen
e from C ⊆ D, and C has aderivation of size s − 1, then by indu
tion CN has an NTL(k)-derivation ofsize at most 2s − 2, and a weakening inferen
e yields DN ⊇ CN. The size ofthe obtained derivation is at most 2s − 1, and the ordering of 
lauses in thederivation is preserved.Now let C ∨ D be derived by a resolution inferen
e from C ∨ xi,j and
D ∨ �xi,j, whi
h are derived by RTL(k)-derivations of size s1 and s2, resp.,where s = s1+s2+1. By indu
tion, there are NTL(k)-derivations of ~C∨�xj,iof size at most 2s1, and of ~D ∨ �xi,j of size at most 2s2, where ~C ⊆ CNand ~D ⊆ DN. A negative inferen
e then yields ~C ∨ ~D, and by a weakening9



inferen
e we obtain CN
∨DN. Note that CN might 
ontain �xj,i, or similarlyfor DN, thus we 
an not ne
essarily obtain CN

∨ DN immediately by anegative inferen
e. The size of the derivation is at most 2s1 + 2s2 + 2 = 2s,and the ordering is preserved.The 
onverse dire
tion also holds, we state it for 
ompleteness withoutproof sin
e we shall not need it here:
Proposition 8. If C has an NTL(k)-derivation from OrdN

n of size s,then C also has an RTL(k)-derivation from Ordn of size at most 6ns.Negative tree-like derivations are preserved under ordering restri
tions.Note that this does not hold for arbitrary restri
tions.
Proposition 9. Let R be a tree-like negative derivation of C from Fof size s, and σ an ordering restri
tion. There is a tree-like negativederivation R ′ of some sub
lause C ′ ⊆ C⌈σ from F⌈σ of size at most s.Proof. The proof is by indu
tion of s. If s = 1, then R is just the single
lause C ∈ F, and hen
e C⌈σ is in F⌈σ, having a derivation of size 1 as well.If C is derived by weakening from D ⊆ C, where D has a derivation ofsize s − 1, then by the indu
tion hypothesis there is D ′ ⊆ D⌈σ having aderivation of size at most s − 1, from whi
h we obtain C⌈σ ⊇ D⌈σ ⊇ D ′ bya weakening again.Now let C be derived from D1 = D ′

1 ∨ �xi,j and D2 = D ′
2 ∨ �xj,i by anegative inferen
e, with Di having a derivation of size si for i = 1, 2 where

s = s1+s2+1. By the indu
tion hypothesis, we have for i = 1, 2 a derivationof D ′′
i ⊆ Di⌈σ of size at most si. We distinguish three 
ases.If �xi,j does not o

ur in D ′′

1 , then we obtain C⌈σ ⊇ D ′
1⌈σ ⊇ D ′′

1 byweakening, and the resulting derivation is of size at most s1 + 1. The 
asewhere �xj,i does not o

ur in D ′′
2 is dual.Otherwise, we have D ′′

1 = ~D1 ∨ �xi,j and D ′′
2 = ~D2 ∨ �xj,i, and we obtain

C ′ = ~D1 ∨ ~D2 ⊆ D ′
1⌈σ ∨ D ′

2⌈σ = C⌈σ by a negative inferen
e, giving aderivation of size at most s1 + s2 + 1 = s again.In parti
ular, if R is a refutation of F, then R ′ is a refutation of F⌈σ. Asusual, we denote R ′ by R⌈σ.We now prove a lower bound on the size of tree-like negative refutationsof the (negative-translated) ordering prin
iple that is slightly larger thanthe bound obtained from the translation of Theorem 3. Via Lemma 7, ityields the same larger lower bound for tree-like resolution refutations ofOrdn. The proof given here is impli
it in the proof of a lower bound forregular resolution refutations of a modi�
ation of Ordn [1℄.10



Lemma 10. Every tree-like negative refutation of OrdN
n is of size atleast 2(n−1)/2.Proof. Let R be a tree-like negative refutation of OrdN

n . We will de�ne asubtree T of R, and for ea
h node ν in T labeled with the 
lause Cν anordering restri
tion σν = ρ(Sν,≺ν) su
h that Cν⌈σν = 0.The root of T is the root r of R, and we de�ne Sr = ∅ and ≺r as theempty ordering. Sin
e Cr = 0, the 
laim holds.Now suppose we have de�ned T up to a node ν with |σν| ≤ n − 2. Sin
eno ordering restri
tion of size less than n falsi�es a 
lause in OrdN
n , ν mustbe an inner node in R.If ν has a single su

essor ν ′, and Cν is derived by weakening from

Cν′ ⊂ Cν, then Cν′⌈σν = 0, so we add ν ′ to T and set σν′ = σν.If ν has two su

essors ν1 and ν2, and Cν is derived by a negativeinferen
e
Cν1

= C ∨ �xi,j Cν2
= D ∨ �xj,i

Cν = C ∨ Dthen we distinguish two 
ases.If i ∈ Sν and j ∈ Sν, then we add one of the 
hildren of ν to T . If i ≺ν j,then we set ν ′ = ν1, otherwise we set ν ′ = ν2, and we add ν ′ to T . In either
ase, by 
onstru
tion we have Cν′⌈σν = 0, and thus we set σν′ = σν.If i /∈ S or j /∈ S, then we add both ν1 and ν2 to T , and in this 
ase we
all ν a bran
hing node. We set Sν1
= Sν2

= Sν ∪ {i, j}. We then 
hoosesome extension ≺ν1
⊇≺ν with i ≺ν1

j, and another extension ≺ν2
⊇≺ν with

j ≺ν2
i. By 
onstru
tion, we have Cνi

⌈σνi
= 0 and |Sνi

| ≤ |Sν| + 2 for
i = 1, 2.Now every bran
h in T 
ontains at least (n − 1)/2 bran
hing nodes, andtherefore T and hen
e R is of size at least 2(n−1)/2.
5 Cyclic clausesFor a negative 
lause C over the variables of Ordn, let G(C) be the dire
tedgraph with vertex set [n] and edges {(i, j) ; �xi,j ∈ C}. A negative 
lause is
y
li
, if G(C) 
ontains a (dire
ted) 
y
le, and a
y
li
 otherwise. It is easilyseen that 
y
li
 
lauses have short tree-like negative refutations.
Lemma 11. Any 
y
li
 
lause over the variables of Ordn of width k hasa tree-like negative refutation of size at most 2min(k, n).Proof. If G(C) is 
y
li
, it 
ontains a 
y
le i1, i2, . . . iℓ, i1 with ℓ ≤ min(k, n).We �rst show that for every su
h 
y
le, the 
lause�xi1,i2 ∨ . . . ∨ �xiℓ−1,iℓ ∨ �xiℓ,i111



has a negative derivation of length at most 2ℓ − 1. From this 
lause, the
lause C is derived by one weakening inferen
e, hen
e it has a derivation oflength 2ℓ ≤ 2min(k, n).We prove the 
laim by indu
tion on ℓ. For ℓ ≤ 3, this 
lause is either
Ai1,i2 or ∆iq,i2,i3 , and hen
e already in OrdN

n . Assume the 
laim holds for
ℓ, then by a negative inferen
e we obtain:�xi1,i2 ∨ . . . ∨ �xiℓ−1,iℓ ∨ �xiℓ,i1 �xi1,iℓ ∨ �xiℓ,iℓ+1

∨ �xiℓ+1,i1�xi1,i2 ∨ . . . ∨ �xiℓ,iℓ+1
∨ �xiℓ+1,i1and the length of the resulting derivation is 2ℓ − 1 + 2 = 2(ℓ + 1) − 1, whi
hshows the 
laim.It follows that 
y
li
 
lauses are useless as lemmas for refuting OrdN

n .
Lemma 12. Let R be an NTL(k)-refutation of OrdN

n of size s. Thenthere is an NTL(k)-refutation R ′ of OrdN
n su
h that every lemma usedin R ′ is a
y
li
, and |R ′| ≤ 2n · s.Proof. Repla
e ea
h 
y
li
 lemma used by its derivation of size at most 2n,whi
h exists by Lemma 11.The �nal ingredient for our proof is the following lemma showing that ashort a
y
li
 
lause 
an always be falsi�ed by a small ordering restri
tion.

Lemma 13. If C is an a
y
li
 negative 
lause of width w(C) ≤ k, thenthere is an ordering restri
tion σ of size |σ| ≤ 2k su
h that C⌈σ = 0.Proof. Let S be the set of those i ≤ n that are mentioned in C, i.e., su
h that�xi,j or �xj,i o

urs in C for some j. Clearly |S| ≤ 2k. Consider the subgraph
G of G(C) indu
ed by S, whi
h only di�ers from G(C) by omitting isolatedverti
es. Sin
e C is a
y
li
, so is G. Let ≺ be any topologi
al ordering of
G, i.e., a total ordering of S su
h that u ≺ v for every edge (u, v) in G.Then for σ := ρ(S,≺) we have C⌈σ = 0 by 
onstru
tion, and |σ| ≤ 2k asrequired.
6 Proof of the lower boundWe are now ready to plug all ingredients together to prove our lower boundresult, Theorem 4.Proof. Let k < n/4, and let R be an RTL(k)-refutation of Ordn of size s.By Lemma 7, there is an NTL(k)-refutation RN of OrdN

n of size |RN| ≤ 2s.Lemma 12 then yields an NTL(k)-refutation R ′ of OrdN
n with only a
y
li
lemmas, of size |R ′| ≤ 4ns. 12



Let C be the �rst 
lause in R ′ that is used as a lemma. Then the subtree
R ′

C of R ′ rooted at C is a tree-like negative derivation of C from OrdN
n , ofsize |R ′

C| ≤ 4ns. Sin
e C is a
y
li
, from Lemma 13 we obtain an orderingrestri
tion σ of size |σ| ≤ 2k < n/2 su
h that C⌈σ = 0, and Proposition 9yields a tree-like negative refutation ~R := R ′
C⌈σ of OrdN

n−|σ|+1 of size at most
8ns. By Lemma 10, ~R is of size at least

|~R| ≥ 2(n−|σ|)/2 ≥ 2(n−2k)/2 ≥ 2n/4 ,therefore we obtain 8ns ≥ 2n/4, and thus
s ≥ 2n/4/8n = 2n/4−logn−3 = 2Ω(n)whi
h proves the 
laim.

7 Implication graph formulasIn 
ontrast to our result above, we now give an example where even the useof very small lemmas gives an exponential speed-up over tree-like resolution.We show that the impli
ation graph formulas for every graph on n verti
eshave RTL(2)-refutations of linear size, whereas it is known that for somegraphs they require exponential size tree-like resolution refutations [3℄.Let a pointed graph be a dire
ted a
y
li
 graph with a unique sink t,where every vertex that is not a sour
e has in-degree 2. The impli
ationgraph formula Imp(G) for su
h a pointed graph G 
onsists of the sour
e
lause xs ∨ ys for every sour
e s, the sink 
lauses �xt and �yt, and the fourimpli
ation 
lauses �xu ∨ �xv ∨ xw ∨ yw�xu ∨ �yv ∨ xw ∨ yw�yu ∨ �xv ∨ xw ∨ yw�yu ∨ �yv ∨ xw ∨ ywfor an inner vertex w with prede
essors u and v.Ben-Sasson et al. [3℄ show a lower bound for tree-like resolution refuta-tions of the impli
ation graph formulas for 
ertain graphs:
Theorem 14. There are pointed graphs Gn with n verti
es su
h thattree-like resolution refutations of Imp(Gn) require size 2Ω(n/logn).On the other hand, we have:
Theorem 15. For every graph G with n verti
es, there are RTL(2)-refutations of Imp(G) of size O(n).13



Proof. For every vertex w with prede
essors u and v, there is a tree-likederivation of xw ∨ yw from the lemmas xu ∨ yu and xv ∨ yv as follows:First resolve xv ∨ yv with the �rst two impli
ation 
lauses, giving �xu ∨

xw ∨ yw. Also, resolve xv ∨ yv with the last two impli
ation 
lauses to give�yu ∨ xw ∨ yw. These two are resolved with xu ∨ yu to obtain xw ∨ yw.Now these derivations 
an be plugged together to yield an RTL(2)-derivation of xt ∨ yt from all the sour
e 
lauses. Resolving this with thesink 
lauses gives the desired refutation.
8 ConclusionWe have provided an example of a 
lass of formulas whi
h 
an be solvedqui
kly by DLL algorithms with 
lause learning, but require exponentialtime when learning is restri
ted to short 
lauses. This rigorous lower boundresult supports the experien
e made in pra
ti
e that restri
ting to short
lauses is not a useful heuristi
 for de
iding whi
h 
lauses to learn. Thehard examples used are the formulas Ordn based on the ordering prin
iple,whi
h frequently o

ur as hard examples in proof 
omplexity.It would be ni
e to have another example showing this behavior that hasonly short input 
lauses, but it seems likely that the te
hnique of this paper
an be extended to provide su
h an example, based on a 3-CNF extensionof the formulas Ordn or a restri
tion of Ordn to the edges of an expandergraph as used by Segerlind et al. [10℄. This is being investigated in ongoingwork.A major problem is to extend the lower bounds to systems with lemmasof arbitrary length, and thus to separate the systems 
orresponding to DLLwith 
lause learning [5, 7℄ { and thus the algorithm itself { from generaldag-like resolution. For this problem, the te
hniques used here and in theearlier lower bound for the pigeonhole prin
iple [5℄ are insuÆ
ient, sin
e theyrely heavily on the proofs being non-regular. But without the regularityrestri
tion, the systems with arbitrary lemmas are equivalent to generalresolution.
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