An exponential lower bound for
width-restricted clause learning

Jan Johannsen

Institut fur Informatik
LMU Miunchen

April 15, 2009

Abstract

It has been observed empirically that clause learning does not sig-
nificantly improve the performance of a satisfiability solver when re-
stricted to learning short clauses only. This experience is supported
by a lower bound theorem: an unsatisfiable set of clauses, claiming the
existence of an ordering of n points without a maximum element, can
be solved in polynomial time when learning arbitrary clauses, but it is
shown to require exponential time when learning only clauses of size
at most n/4. The lower bound is of the same order of magnitude as
a known lower bound for backtracking algorithms without any clause
learning. It is shown by proving lower bounds on the proof length in
a certain resolution proof system related to clause learning.

1 Introduction

Most contemporary SAT solvers are based on extensions of the basic back-
tracking procedure known as the DLL-algorithm [6]. One of the most suc-
cessful of these extensions is clause learning [11], which works roughly as
follows: When the backtracking algorithm encounters a conflict, i.e., a clause
falsified by the current partial assignment «, then a sub-assignment o’ of
that suffices to cause this conflict is computed. This sub-assignment «’, the
reason for the conflict, can then be stored in form of a new clause C added
to the formula, viz. the unique largest clause C falsified by «’. This way
the algorithm can later backtrack earlier when again a partial assignment
extending «’ occurs in another branch of the search tree, since then the
added clause C becomes falsified and thus causes a conflict.

When clause learning is implemented, a heuristic is needed to decide
which learnable clauses to actually keep in memory, as learning a large

number of clauses leads to excessive memory usage, which slows the algo-
rithm down rather than helping it. An obvious simple heuristic is to learn
only short clauses, i.e., to set a threshold (possibly depending on the input
clauses), and to keep in memory only clauses whose size does not exceed the
threshold.

Researchers who have experimented with heuristics for clause learning,
e.g. the author himself or Letz [9], have experienced that this simple heuris-
tic is not very helpful, i.e., learning only short clauses does not significantly
improve the performance of a DLL algorithm for hard formulas The present
work aims at supporting this experience with a rigorous mathematical anal-
ysis in the form of a lower bound theorem.

In earlier work [5], we have shown such a lower bound for the well-known
pigeonhole principle clauses PHP,,. These formulas require time 2(nlogm)
to solve when learning clauses of width up to n/2 only, whereas they can be
solved in time 29 when learning arbitrary clauses. While this example
in principle shows the weakness of the heuristic, it is not fully satisfactory,
since even with arbitrary learning, the time required is exponential in n, it
just takes still more time — about n! — to solve when learning short clauses
only.

Here we provide another example using a set of clauses Ord,, based on
the ordering principle. These formulas can be solved in polynomial time
when learning arbitrary clauses, but require exponential time to solve when
learning clauses of size up to n/4 only. This lower bound is asymptotically
the same as the known exponential lower bound [4] on the time for solving
Ord,, by DLL algorithms without clause learning.

The lower bounds on the run-time are shown by proving the same lower
bounds on the length of refutations in a certain propositional proof system.
The relationship of this proof system to the DLL algorithm with clause
learning has been established in several earlier works [5, 7].

2 Preliminaries

A literal is a variable x or a negated variable X, the former are positive
literals and the latter negative literals. A clause is a disjunction C =
aV...vay of literals aji, its width is w(C) = k, the number of literals in it.
We identify a clause with the set of literals occurring in it, even though for
clarity we still write it as a disjunction. A clause is negative if it contains
no positive literals. A formula in conjunctive normal form (CNF) is a
conjunction F = Cq A...ACy, of clauses, it is usually identified with the set
of clauses {Cy,...,Cm}.

We consider refutation systems for formulas in CNF based on the reso-
lution rule, which are well-known to be strongly related to DLL algorithms.
The proof systems under consideration have two inference rules: the weak-
ening rule, which allows to conclude a clause D from any clause C with
C C D, and the resolution rule, which allows to infer the clause CvD from
the two clauses Cvx and D vX, provided that the variable x does not occur
in either C or D, pictorially:

Cvx Dvx
CvD

We say that the variable x is eliminated in this inference.

A resolution derivation of a clause C from a CNF-formula F is a directed
acyclic graph (dag) with a unique sink, in which every node has in-degree
at most 2, and with every node v labeled with a clause C, such that:

1. The sink is labeled with C.

2. If a node v has one predecessor v/, then C, follows from C,/ by the
weakening rule.

3. If a node v has two predecessors v1,Vv;, then C, follows from C,, and
Cy, by the resolution rule.

4. A source node v is labeled by a clause C in F.

The size of a resolution derivation is the number of nodes in the dag. A
resolution refutation of F is a resolution derivation of the empty clause
from F. We call a derivation tree-lzke if the underlying unlabeled dag is a
tree, otherwise we may call it dag-like for emphasis.

Note that the weakening rule is redundant in tree-like and dag-like res-
olution refutations: its uses can be eliminated from a refutation without
increasing the size. This may not be the case for the proof system we define
below.

A resolution derivation is called regular if on every path through the
dag, each variable is eliminated at most once. Regularity is not an essen-
tial restriction on tree-like resolution since minimal tree-like refutations are
always regular [13], but regular dag-like refutations can necessarily be ex-
ponentially longer than general ones [1].

Regular tree-like resolution exactly corresponds to the DLL algorithm
by the following well-known correspondence: the run of a DLL-algorithm on
an unsatisfiable formula F forms a regular, tree-like resolution refutation of
F without use of the weakening rule. Since the weakening rule is redundant
in tree-like resolution proofs, the converse direction holds as well.

The proof system studied in this work are resolution trees with lemmas
(RTL), which are defined as follows: An RTL-derivation of C from F is
defined like a tree-like resolution derivation of C from F, but here a node
with in-degree 2 has a distinguished left and right predecessor. Then the
clause 4 of the definition liberalized to:

4a. A source node v is labeled by a clause D in F, or by a clause C labelling
some node v’ < v. In the latter case we call C a lemma.

Here < denotes the post-ordering of the tree, i.e., the order in which the
nodes of the tree are visited by a post-order traversal, which at a node v
with two predecessors first recursively traverses the left subtree, i.e., the
subtree rooted at the left predecessor of v, then recursively traverses the
right subtree, and then visits v itself.

An RTL-derivation is an RTL(k)-derivation if every lemma C is of width
w(C) < k. An RTL-derivation of the empty clause from F is an RTL-
refutation of F. Note that RTL is equivalent to dag-like resolution and
RTL(0) is equivalent to tree-like resolution.

A subsystem WRTI of RTL has been described by Buss et al. [5] which
corresponds to a general formulation of the DLL algorithm with clause learn-
ing. This system WRTI imposes the regularity restriction on derivations,
and does not include the full weakening rule, but incorporates some amount
of weakening into a generalized resolution inference rule, the so-called w-
resolution rule. It also restricts further the structure of sub-derivations of
clauses that can be used as lemmas, which have to be derived by input res-
olution derivations. W.r.t. the length of proofs, WRTT lies between regular
and general dag-like resolution.

The size of a refutation of an unsatisfiable formula F in WRTI has been
shown [5] to be polynomially related to the runtime of a schematic algorithm
DLL-L-UP on F. This schema DLL-L-UP subsumes all commonly used
clause learning strategies, including first-UIP [11], all-UIP, decision [15]
and rel-sat [2], but is slightly more general than a DLL algorithm with clause
learning by being non-greedy in the sense that it can continue branching
even after a conflict was reached. In the simulation of clause learning by
WRTI, the clauses learned by the algorithm are those clauses used as lemmas
in the refutation.

A different system with similar properties was described by Hertel et al.
[7], building on earlier work of van Gelder [14], which can likewise be seen
as a subsystem of RTL.

It follows that if an unsatisfiable formula F can be solved by a DLL-
algorithm with clause learning in time t, then it has an RTL-refutation of
size polynomial in t. Moreover, if the algorithm learns only clauses of width

k, then the refutation is in RTL(k). In the following we prove lower bounds
on the size of refutations in RTL(k), which thus readily translate into lower
bounds on the runtime of DLL with width-restricted clause-learning.

A common tool in proof complexity is to consider formulas under a par-
tial assignment, called restriction in this context. We shall need a slightly
more general notion of restriction in this work.

Let X be a set of variables. A restriction with renaming is a (total)
function p : X — XU{0,1}. The function p is extended to literals by setting

1 if p(x)
p(x) =<0 if p(x)
p(x) ifp(x)eX.

0
1

For a clause C in variables X, we define

1 if p(a) =1 for some a € C
Clp:= \/ p(a) otherwise,
aeC, p(a)#0

where the empty disjunction is identified with the constant 0. For a CNF-
formula F over X, we define

0 if C[p =0 for some C € F
Flp:= /\ Clp otherwise,
CEF, Cp#1

where the empty conjunction is identified with 1.

Just like ordinary restrictions, the more general renaming restrictions
preserve proofs in most propositional proof systems. We state this fact here
only for resolution.

Proposition 1. Let R be a (tree-like) resolution proof of C from F of
size s, and p a restriction with renaming. Then there is a (tree-like)
resolution proof R’ of C[p from F[p of size at most 2s.

The proposition is shown by a straightforward induction along the proof
R, the proof will not be given here, as we will prove a special case that we
actually use below.

In the following we just use the word restriction for restrictions with
renaming, since ordinary restrictions do not occur in this work.

3 The ordering principle

The ordering principle expresses the fact that every finite total ordering has
a maximal element. Its negation is expressed in propositional logic by the
following set of clauses Ord,, over the variables x;; for 1 < i,j < n with

1#£5:

Xij VXji forT<i<j<n (Ay;)
Xij VXji forT<i<j<n (Tij)
Xij V Xk VXii for 1 <i<jk<nwithj#k (Aijx)

\/ Xij for1<i<n (My)
iemI\i}

Let R be the relation on [n] given by an assignment to the variables, so that
iR j holds iff x;; is set to 1. The clauses A;; and T;; state that for every i
and j, either 1 Rj or j R1i holds, but not both. The clause A;; state that
there are no cycles of length 3 in R, which modulo the first two families of
clauses is equivalent to R being transitive. Thus the first three clause sets
state that R is a total ordering. The clauses M; then state that this ordering
has no maximal element, therefore the formula is unsatisfiable.

The formulas Ord,, were introduced by Krishnamurthy [8] as potential
hard example formulas for resolution, but short regular resolution refuta-
tions for them were constructed by Stalmarck [12].

Proposition 2. There are dag-like regqular resolution refutations of Ord,,
of size O(n3).

Note that the size of the formula Ord, is @(n3), so the size of these
refutations is linear in the size of the formula. A general simulation of regular
resolution by WRTI [5] yields WRTI-refutations of Ord,, of polynomial size.
From these, it is straightforward to construct a polynomial length run of
a DLL algorithm with clause learning on Ord,, making the branching and
learning decisions suggested by the refutation.

On the other hand, the following lower bound for tree-like resolution
refutations of Ord,, was shown by Bonet and Galesi [4]. It implies that a
DLL algorithm without clause learning requires exponential time to solve
these formulas.

Theorem 3. Ewvery tree-like resolution refutation of Ord, is of size
200,

More precisely, the lower bound proved by Bonet and Galesi is Q(27/°).
We shall prove a larger lower bound of Q(2™/2) below. Our main result is a
lower bound on the size of RTL(k)-refutations of the formulas Ord,,.

Theorem 4. For k < n/4, every RTL(k)-refutation of Ord,, is of size
20Qm),

It follows that a DLL algorithm with learning requires exponential time
to solve these formulas, when learning is restricted to clauses of width less
than n/4.

The idea of the proof is similar to that of the mentioned lower bound for
the pigeonhole principle PHP,, [5]: the goal is to show that a long derivation
is required to obtain a clause that is short enough to be used as a lemma. To
prove this, look at the first sufficiently short clause C, and find a restriction
p falsifying C. Then the derivation of C, restricted by p, is a tree-like
resolution refutation of PHP,,, for some n’ < n, and therefore needs to be
large by a known lower bound.

This strategy does not quite work here directly, since from Ord,, short
clauses can be derived very quickly. Therefore we single out a class of useful
clauses, and show that any refutation can be transformed so that only these
useful clauses are used as lemmas, in Section 5.

After that, we again look at the first clause used as a lemma, and find a
restriction falsifying it. Thereby we obtain a tree-like refutation of a smaller
instance of the ordering principle, which needs to be large by a known
lower bound. A class of restrictions that makes this construction possible is
defined below.

The argument becomes simpler if the proof is first brought into a normal
form that contains only negative clauses; this is done in Section 4. Finally,
in Section 6, everything is put together to prove the theorem.

As mentioned, we need to define a class of restrictions that preserve the
ordering principle clauses, similar to the matching restrictions that preserve
the pigeonhole principle formulas, but in contrast to those we require re-
strictions with renaming. For a non-empty set S C [n] and a total ordering
< on S, we define the ordering restriction p(S, <) by

1 ifi,je Sand 1 <j
0 ifi,jeSandj~<i
p(S,<) 1 Xij— {xs; ifi€Sandj¢S$
xis ifi¢SandjeS

)

xi; otherwise,

where s € S is arbitrary but fixed, e.g. s := maxS. We let o range over
ordering restrictions, and for 0 = p(S, <) we let |o| :=S|.

The main property of ordering restrictions is that they preserve the
ordering principle formulas.

Proposition 5. For every ordering restriction o with |o] > 1,
Ordn[c = Ordn_‘c‘ﬂ .

Proof. We shall see that the restriction of every clause from Ord,, by ¢ =
p(S,<) with |S| > 1 is again one of the clauses from Ord,, with indices
from [n] \ S U{s}. Thus after a renaming of variables we obtain the clauses
Ord,, (541

The clauses Tij, Aij and Ajjx for 1,j,k € S remain unaffected by the
restriction.

The restriction by o of the clauses T;;, where i € S and j ¢ S are the
clauses Ts;, and similarly for j € S and i ¢ S. The clauses T;[o with
{i,j} C S are satisfied. The analogous statements hold for the clauses A; ;.

The clauses A; ;[0 with i € S and j, k ¢ S are Agj, and similarly for
the other situations where |{i,j,k} N S| =1.

The clauses Aj;x with i,j € S and k ¢ S with j < i are satisfied by o,
and similarly for the symmetric situations as well as for {i,j,k} € S. For
i,j € S with 1 < j, the restriction of A;; by o is Ay, and similarly for the
symmetric cases.

Finally, the restriction of M; for i ¢ S is M; over the smaller domain,
for the maximal element i of S under < it is M, and for other values i € S
it is satisfied. O

4 Negative calculus

We now define a normal form for RTL-derivations from Ord,, in form of a
negative calculus NTL that uses only negative clauses.

For a clause C in the variables of Ord,,, we define a negative clause CN
that is equivalent to C w.r.t. ordering restrictions as follows:

N . SV
le] = X"L,]
N ._ <. .
Xi,]' = X],l
CN — \/ ClN

Observe that w(CN) < w(C) for every clause C, but the translated clause
can be strictly smaller, e.g., (x12Vx13 \/)‘cZJ)N is X2,1 VX3,1. The negative
translation OrdE of the ordering principle is the conjunction of the clauses:

Ai,j for1<i<j<n,
Aijx for 1 <i<j,k<n with j #k, and
MN for 1 <i<n.

1

It is easily seen that the negative translation commutes with ordering re-
strictions, i.e., for every clause C and ordering restriction o we have CN[o =
(C[o)N. It follows from Lemma 5 and this fact that ordering restrictions
preserve the negative-translated ordering principle:

Corollary 6. For every ordering restriction o with |o] > 1,

Ord\[o = Ord} g4 -

In the negative calculus NTL, the essential positive clauses T;; in the
ordering principle are coded in an inference rule, the negative inference:
C \/7_(1‘]' D \/)_(j i
CvD

An NTL-derivation is defined exactly as an RTL-derivation, only with the
negative inference replacing the resolution inference. An NTL-derivation
that does not use any lemmas is called a tree-like negative derivation. Also,
an NTL-derivation is an NTL(k)-derivation if every lemma used is of width
at most k.

We now provide a translation of RT'L-derivations from the ordering prin-
ciple clauses into the negative calculus that preserves the proof size and the
width of lemmas used.

Lemma 7. If C has an RTL(k)-deriation from Ord,, of size s, then CN
has an NTL(k)-deriwation from Ordl\ﬂ of size at most 2s.

Proof. Let R be an RTL(k)-derivation of C from from Ord,,. We construct
an NTL(k)-derivation of CN of the appropriate size.

For each clause C in Ord,,, the translation CV is in Ordl\ﬂ, so the claim
holds for the axiom leaves. For the lemma leaves, we shall take care in the
construction that the clauses C™N for C occurring in R, occur in RN in the
same order, so the lemmas can be used as needed. Also note that since
w(CN) <w(C), the lemmas used do not exceed the width bound.

If D is derived by a weakening inference from C C D, and C has a
derivation of size s — 1, then by induction CN has an NTL(k)-derivation of
size at most 2s — 2, and a weakening inference yields DN O CN. The size of
the obtained derivation is at most 2s — 1, and the ordering of clauses in the
derivation is preserved.

Now let C v D be derived by a resolution inference from C v x;; and
D v Xi;, which are derived by RTL(k)-derivations of size s; and s;, resp.,
where s = s7+ s>+ 1. By induction, there are NTL(k)-derivations of C"i\/)'cjyi
of size at most 2s;, and of D V Xi; of size at most 2s,, where ¢ ccN
and D C DN. A negative inference then yields C v D, and by a weakening

inference we obtain CN v D™, Note that CN might contain X; i, or similarly
for DN, thus we can not necessarily obtain CN v DN immediately by a
negative inference. The size of the derivation is at most 2sy + 2s, + 2 = 2s,
and the ordering is preserved. O

The converse direction also holds, we state it for completeness without
proof since we shall not need it here:

Proposition 8. If C has an NTL(k)-derwation from Ordl:I of size s,
then C also has an RTL(k)-deriwation from Ord, of size at most é6ns.

Negative tree-like derivations are preserved under ordering restrictions.
Note that this does not hold for arbitrary restrictions.

Proposition 9. Let R be a tree-like negative derivation of C from F
of size s, and o an ordering restriction. There is a tree-like negative
derivation R’ of some subclause C' C C[o from F[o of size at most s.

Proof. The proof is by induction of s. If s = 1, then R is just the single
clause C € F, and hence C[o is in F[o, having a derivation of size 1 as well.

If C is derived by weakening from D C C, where D has a derivation of
size s — 1, then by the induction hypothesis there is D’ C D[o having a
derivation of size at most s — 1, from which we obtain C[oc D D[o 2 D’ by
a weakening again.

Now let C be derived from D; = D} vX;ij and D, = D) vX;; by a
negative inference, with D; having a derivation of size s; for i = 1,2 where
s = s1+s,+1. By the induction hypothesis, we have for i = 1,2 a derivation
of D!’ C Dy o of size at most s;. We distinguish three cases.

If X;; does not occur in Df, then we obtain C[oc O Dj[o O D{ by
weakening, and the resulting derivation is of size at most sy + 1. The case
where X; ; does not occur in D/ is dual.

Otherwise, we have D/ = D v%;; and D4 = D, v%;;, and we obtain
C' = Dy vD; C Di[ovDj[oc = C[o by a negative inference, giving a
derivation of size at most s; + s> + 1 = s again. O

In particular, if R is a refutation of F, then R’ is a refutation of F[o. As
usual, we denote R’ by RJo.

We now prove a lower bound on the size of tree-like negative refutations
of the (negative-translated) ordering principle that is slightly larger than
the bound obtained from the translation of Theorem 3. Via Lemma 7, it
yields the same larger lower bound for tree-like resolution refutations of
Ord,,. The proof given here is implicit in the proof of a lower bound for
regular resolution refutations of a modification of Ord,, [1].

10

Lemma 10. Every tree-like negative refutation of OrdE 1s of size at
least 2(n—1)/2,

Proof. Let R be a tree-like negative refutation of OrdY. We will define a
subtree T of R, and for each node v in T labeled with the clause C, an
ordering restriction o = p(S+, <) such that C,[o, = 0.

The root of T is the root r of R, and we define S, = () and <, as the
empty ordering. Since C; =0, the claim holds.

Now suppose we have defined T up to a node v with |0 < n — 2. Since
no ordering restriction of size less than n falsifies a clause in OrdY, v must
be an inner node in R.

If v has a single successor v/, and C, is derived by weakening from
Cys C Cy, then Cy/[0y =0, so we add v’ to T and set o/ = 0.

If v has two successors vy and v,, and C, is derived by a negative

inference _ _
CV1 = C\/Xi)j CVz = D\/iji

then we distinguish two cases.

IfieS, andj € S,, then we add one of the children of v to T. If i <, j,
then we set v/ = v1, otherwise we set v/ = v;, and we add v’ to T. In either
case, by construction we have C,.[o, =0, and thus we set o, = 0.

Ifi¢gSorj¢sS, then we add both vy and v, to T, and in this case we
call v a branching node. We set S, =Sy, = S, U{i,j}. We then choose
some extension <., 2<. with 1 <., j, and another extension <.,><, with
j <~v, 1. By construction, we have C,, [0y, = 0 and [S,,| < [Sy|+ 2 for
i=1,2

Now every branch in T contains at least (n — 1)/2 branching nodes, and
therefore T and hence R is of size at least 2("1)/2, O

5 Cyclic clauses

For a negative clause C over the variables of Ord,,, let G(C) be the directed
graph with vertex set [n] and edges {(i,j); Xi; € C}. A negative clause is
cyclic, if G(C) contains a (directed) cycle, and acyclic otherwise. It is easily
seen that cyclic clauses have short tree-like negative refutations.

Lemma 11. Any cyclic clause over the variables of Ord,, of width k has
a tree-like negative refutation of size at most 2min(k,n).

Proof. If G(C) is cyclic, it contains a cycle i1,12,...1¢, 11 with £ < min(k, n).
We first show that for every such cycle, the clause

Xipip Voo VX g4 VX

11

has a negative derivation of length at most 2{ — 1. From this clause, the
clause C is derived by one weakening inference, hence it has a derivation of
length 2{ < 2min(k,n).

We prove the claim by induction on . For { < 3, this clause is either
Ai i, O Ay i, 15, and hence already in Ordl. Assume the claim holds for
¢, then by a negative inference we obtain:

Xip i, Voo VX404, VX g Xiyig VX iy VX0 4

Xipip Voo VX4 VX 4

and the length of the resulting derivation is 2 —1+2 =2({+ 1) — 1, which
shows the claim. O

It follows that cyclic clauses are useless as lemmas for refuting Ordl.

Lemma 12. Let R be an NTL(k)-refutation of Ord of size s. Then
there is an NTL(k)-refutation R’ of Ordl:I such that every lemma used
in R’ is acyclic, and R’ < 2n - s.

Proof. Replace each cyclic lemma used by its derivation of size at most 2n,
which exists by Lemma 11. O

The final ingredient for our proof is the following lemma showing that a
short acyclic clause can always be falsified by a small ordering restriction.

Lemma 13. If C is an acyclic negative clause of width w(C) <k, then
there 1s an ordering restriction o of size |o] < 2k such that C[o = 0.

Proof. Let S be the set of those i < n that are mentioned in C, i.e., such that
Xi; or X; occurs in C for some j. Clearly |S| < 2k. Consider the subgraph
G of G(C) induced by S, which only differs from G(C) by omitting isolated
vertices. Since C is acyclic, so is G. Let < be any topological ordering of
G, i.e., a total ordering of S such that u < v for every edge (u,v) in G.
Then for o := p(S, <) we have C[oc = 0 by construction, and |o] < 2k as
required. O

6 Proof of the lower bound

We are now ready to plug all ingredients together to prove our lower bound
result, Theorem 4.

Proof. Let k < n/4, and let R be an RTL(k)-refutation of Ord,, of size s.
By Lemma 7, there is an NTL(k)-refutation RN of Ordl\ﬂ of size [RN| < 2s.
Lemma 12 then yields an NTL(k)-refutation R’ of OrdT]\L' with only acyclic
lemmas, of size |[R’| < 4ns.

12

Let C be the first clause in R’ that is used as a lemma. Then the subtree
R/ of R’ rooted at C is a tree-like negative derivation of C from OrdY, of
size [R| < 4ns. Since C is acyclic, from Lemma 13 we obtain an ordering
restriction o of size |o] < 2k < n/2 such that C[o = 0, and Proposition 9
yields a tree-like negative refutation R := Ri[o of OrdTl\L]_ller1 of size at most

8ns. By Lemma 10, R is of size at least

|§| > Z(n—IUI)/Z > Z(n—Zk)/Z > 2n/4’

therefore we obtain 8ns > 2“/4, and thus

s > Zn/4/81’l — 2n/4—10g n-3 _ 2Q(n)

which proves the claim.]

7 Implication graph formulas

In contrast to our result above, we now give an example where even the use
of very small lemmas gives an exponential speed-up over tree-like resolution.
We show that the implication graph formulas for every graph on n vertices
have RTL(2)-refutations of linear size, whereas it is known that for some
graphs they require exponential size tree-like resolution refutations [3].

Let a pointed graph be a directed acyclic graph with a unique sink t,
where every vertex that is not a source has in-degree 2. The implication
graph formula Imp(G) for such a pointed graph G consists of the source
clause x5 VvV ys for every source s, the sink clauses X; and 4, and the four
implication clauses

XuVXy VX VUn
Xu VUy VX VYy
Yu V Xy VX VY

YuVUv VX VYw

for an inner vertex w with predecessors u and v.
Ben-Sasson et al. [3] show a lower bound for tree-like resolution refuta-
tions of the implication graph formulas for certain graphs:

Theorem 14. There are pointed graphs G, with n vertices such that
tree-like resolution refutations of Imp(Gy) require size 22(/logm),

On the other hand, we have:
Theorem 15. For every graph G with n vertices, there are RTL(2)-
refutations of Imp(G) of size O(n).

13

Proof. For every vertex w with predecessors u and v, there is a tree-like
derivation of x,, v Y, from the lemmas x,, vy, and x, vy, as follows:
First resolve x, vy, with the first two implication clauses, giving X, Vv
Xw V Yw- Also, resolve x,, vy, with the last two implication clauses to give
Yu VvV Xw VYw. These two are resolved with x, vy, to obtain x,, Vymw.
Now these derivations can be plugged together to yield an RTL(2)-
derivation of x{ vyt from all the source clauses. Resolving this with the
sink clauses gives the desired refutation. O

8 Conclusion

We have provided an example of a class of formulas which can be solved
quickly by DLL algorithms with clause learning, but require exponential
time when learning is restricted to short clauses. This rigorous lower bound
result supports the experience made in practice that restricting to short
clauses is not a useful heuristic for deciding which clauses to learn. The
hard examples used are the formulas Ord,, based on the ordering principle,
which frequently occur as hard examples in proof complexity.

It would be nice to have another example showing this behavior that has
only short input clauses, but it seems likely that the technique of this paper
can be extended to provide such an example, based on a 3-CNF extension
of the formulas Ord,, or a restriction of Ord,, to the edges of an expander
graph as used by Segerlind et al. [10]. This is being investigated in ongoing
work.

A major problem is to extend the lower bounds to systems with lemmas
of arbitrary length, and thus to separate the systems corresponding to DLL
with clause learning [5, 7] — and thus the algorithm itself — from general
dag-like resolution. For this problem, the techniques used here and in the
earlier lower bound for the pigeonhole principle [5] are insufficient, since they
rely heavily on the proofs being non-regular. But without the regularity
restriction, the systems with arbitrary lemmas are equivalent to general
resolution.

Acknowledgments. I thank Jan Hoffmann for helpful discussions about
the results in this paper, and two reviewers for some useful suggestions.

References

[1] M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart. An expo-
nential separation between regular and general resolution. Theory of

14

[11]

[12]

[13]

Computing, 3:81-102, 2007.

R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques
to solver real-world SAT instances. In Proc. 14th Natl. Conference
on Artificial Intelligence, pages 203-208, 1997.

E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-optimal sep-
aration of general and tree-like resolution. Combinatorica, 24(4):585—
604, 2004.

M. L. Bonet and N. Galesi. Optimality of size-width tradeoffs for res-
olution. Computational Complezity, 10(4):261-276, 2001.

S. R. Buss, J. Hoffmann, and J. Johannsen. Resolution trees with
lemmas: Resolution refinements that characterize DLL algorithms with
clause learning. Logical Methods in Computer Science, 4(4), 2008.

M. Davis, G. Logemann, and D. W. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394-397, 1962.

P. Hertel, F. Bacchus, T. Pitassi, and A. van Gelder. Clause learning
can effectively p-simulate general propositional resolution. In D. Fox
and C. P. Gomes, editors, Proceedings of the 23rd AAAI Conference
on Artifictal Intelligence, AAAI 2008, pages 283-290. AAAIT Press,
2008.

B. Krishnamurthy. Short proofs for tricky formulas. Acta Informatica,
22:253-274, 1985.

R. Letz. personal communication.

N. Segerlind, S. R. Buss, and R. Impagliazzo. A switching lemma
for small restrictions and lower bounds for k-DNF resolution. SIAM
Journal on Computing, 33(5):1171-1200, 2004.

J. P. M. Silva and K. A. Sakallah. GRASP - a new search algorithm
for satisfiability. In Proc. IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pages 220-227, 1996.

G. Stalmarck. Short resolution proofs for a sequence of tricky formulas.
Acta Informatica, 33:277-280, 1996.

G. Tseitin. On the complexity of derivation in propositional calcu-
lus. Studies in Constructive Mathematics and Mathematical Logic,
Part 2, pages 115-125, 1968.

15

[14]

A. van Gelder. Pool resolution and its relation to regular resolution
and DPLL with clause learning. In Logic for Programmaing, Artificial
Intelligence, and Reasoning (LPAR), LNAI 3835, pages 580-594.
Springer-Verlag, 2005.

L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient
conflict driven learning in a Boolean satisfiability solver. In Proc.
IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pages 279-285, 2001.

16

