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Abstra
t

Using a notion of real 
ommuni
ation 
omplexity re
ently introdu
ed by J. Kraj���
ek,

we prove a lower bound on the depth of monotone real 
ir
uits and the size of

monotone real formulas for st-
onne
tivity. This implies a super-polynomial speed-

up of dag-like over tree-like Cutting Planes proofs.
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Introdu
tion

A monotone real 
ir
uit is a 
ir
uit 
omputing with real numbers in whi
h

every gate 
omputes a nonde
reasing binary real fun
tion. This 
lass of 
ir
uits

was introdu
ed in [10℄. We require that su
h a 
ir
uit outputs 0 or 1 on every

input of 0's and 1's only. Hen
e, monotone real 
ir
uits are a generalization of

monotone boolean 
ir
uits, whi
h was shown to be stri
tly more powerful in

[11℄.

The depth and size of a monotone real 
ir
uit are de�ned as usual, and we


all it a formula if every gate has fan-out at most 1.

We generalize the lower bounds on the depth of monotone boolean 
ir
uits and

the size of monotone boolean formulas for st-
onne
tivity of [7℄ to monotone

real 
ir
uits. By the main result of [10℄, this also implies a super-polynomial

lower bound on the size of tree-like Cutting Planes proofs. Together with an

?
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upper bound from [3℄, this separates tree-like Cutting Planes from their dag-

like 
ounterparts, answering an open question from [5℄ .

We denote by d

R

(f) the minimal depth of a monotone real 
ir
uit 
omputing

f , and by s

R

(f) the minimal size of a monotone real formula 
omputing f .

For a natural number n, [n℄ denotes the set f1; : : : ; ng.

Real Communi
ation Complexity

We re
all the notion of real games and real 
ommuni
ation 
omplexity intro-

du
ed in [8℄. Let U; V be �nite sets. A real game on U; V is played by two

players I and II, where I 
omputes a fun
tion f

I

: U � f0; 1g

�

! R and II


omputes a fun
tion f

II

: V � f0; 1g

�

! R. Given inputs u 2 U , v 2 V , the

players generate a sequen
e w of bits as follows:

w

0

:= �

w

k+1

:=

8

>

<

>

:

w

k

0 if f

I

(u; w

k

) > f

II

(v; w

k

)

w

k

1 else

Let I be another �nite set, and let R � U � V � I be a multifun
tion, i.e.

8u2U 8v2V 9i2I (u; v; i) 2 R. Its real 
ommuni
ation 
omplexity 



R

(R) is

the minimal number k su
h that there is a real game on U; V and a fun
tion

g : f0; 1g

k

! I su
h that

8u2U 8v2V (u; v; g(w

k

)) 2 R :

If this holds then we also say that the game in question solves R in k rounds.

Let f : f0; 1g

n

! f0; 1g be a monotone boolean fun
tion, let U := f

�1

(1) and

V := f

�1

(0), and let the multifun
tion R

f

� U � V � [n℄ be de�ned by

(u; v; i) 2 R

f

i� u

i

= 1 and v

i

= 0 :

Then there is a relation between the real 
ommuni
ation 
omplexity of R

f

and

the depth of a monotone real 
ir
uit or the size of a monotone real formula


omputing f , similar to the boolean 
ase:

Lemma 1 (Kraj���
ek [8℄) Let f be a monotone boolean fun
tion. Then





R

(R

f

) � d

R

(f) and 



R

(R

f

) � log

3=2

s

R

(f) :
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PROOF. Let the value at gate G on input u 2 U be greater than the value

at G on input v 2 V . As the fun
tion 
omputed by G is nonde
reasing, the

same must hold for at least one of the gates immediately below G. By playing

the value of, say, the left gate below G on input u and v, respe
tively, the

players 
an determine for whi
h of the two gates this is the 
ase. Hen
e given

a 
ir
uit of depth k 
omputing f , the players 
an �nd an input gate i with

u

i

> v

i

in k rounds. This proves the �rst inequality.

For the se
ond inequality, let f(x) be a formula of size s with f(u) > f(v).

The players determine a subformula h(x) with

1

3

jf(x)j � jh(x)j <

2

3

jf(x)j,

then play the values h(u) and h(v), respe
tively. If h(u) > h(v), they 
ontinue

with the formula h(x). Otherwise let f(x) = f

0

(x; h(x)), then the players


ontinue with the formula f

0

(x; 
), where 
 is the 
onstant h(u) for player I

and h(v) for player II respe
tively. After log

3=2

s rounds, the players will have

found an input i with u

i

> v

i

. �

For a monotone boolean fun
tion f , let min(f) denote the set of minterms of

f , and max(f) the set of maxterms of f . Sin
e f is monotone, we 
an represent

these as sets of index sets. We de�ne the relation R

m

f

� min(f)�max(f)� [n℄

by

(p; q; i) 2 R

m

f

i� i 2 p \ q :

Then as in the boolean 
ase (see [6℄), a real game solving R

f


an be used to

solve R

m

f

, and vi
e versa, hen
e we have





R

(R

m

f

) = 



R

(R

f

) :

Let st
onn

n

be the monotone fun
tion on

�

n+2

2

�

variables, representing the

edges of an undire
ted graph G on the set of nodes N := [n℄ [ fs; tg, that

gives 1 if there is a path in G from s to t, and 0 else. As an example, we shall

give a real game for R

m

st
onn

n

, giving an upper bound 



R

(R

m

st
onn

n

) = O(log

2

n).

A minterm of st
onn

n

is a simple path from s to t, and a maxterm 
an be

represented by a 
oloring of N by two 
olors 0,1 su
h that s gets 
olor 0 and

t gets 
olor 1. The aim of the game is to �nd a bi
olored edge in the path.

Letm be the number of the middle node of I's path. For dlogne rounds, player

I keeps playing m, while player II uses binary sear
h to determine m. After

that, both players know m, and I plays 0 while II plays m's 
olor, thereby


ommuni
ating that 
olor to I. If the 
olor is 1, then the players repeat this

pro
edure with the half of the path from s to m, otherwise with the half from

m to t. After at most dlogne repetitions, the length of the 
urrent path is 1,

hen
e the players have found a bi
olored edge.
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We shall show that also 



R

(R

m

st
onn

n

) = 
(log

2

n), thus by Lemma 1, monotone

real 
ir
uits for st
onn

n

have to have depth 
(log

2

n), and monotone real

formulas for st
onn

n

are of size n


(log n)

.

The Lower Bound

The proof of the lower bound on 



R

(R

m

st
onn

n

) follows 
losely the proof of the

Kar
hmer/Wigderson monotone 
ir
uit depth lower bound as presented in [2,

se
tion 5.2℄.

Let a game solving R � U�V � I in k+1 rounds be given. Let �

u

:= f

I

(u; �)

and �

v

:= f

II

(v; �). W.l.o.g. we 
an assume that �

u

6= �

u

0

for u 6= u

0

2 U and

�

v

6= �

v

0

for v 6= v

0

2 V . Now 
onsider a matrix whose 
olumns are indexed by

the �

u

's and whose rows are indexed by the �

v

's, both in in
reasing order, and

let the entry in position (�

u

; �

v

) be 0 if �

u

> �

v

and 1 else. Then it is easily

seen that either the upper right d

jU j

2

e � d

jV j

2

e-submatrix is entirely �lled with

0's, or the lower left d

jU j

2

e � d

jV j

2

e-submatrix is entirely �lled with 1's. Hen
e

there are U

0

� U and V

0

� V with jU

0

j �

1

2

jU j and jV

0

j �

1

2

jV j su
h that

for every input (u; v) 2 U

0

� V

0

, the �rst bit played is the same, say b. Hen
e

there is a game that solves R restri
ted to U

0

� V

0

in k rounds: pretend that

in the �rst round, the bit b was played, and then 
ontinue as in the original

game. This motivates the following de�nition:

We 
all a real game an (n; `; �; Æ)-game of length k, if there is a set U of paths

from s to t of length `+1, represented as ve
tors in [n℄

`

, and a set V � f0; 1g

[n℄

of 
olorings with jU j � �n

`

and jV j � Æ2

n

su
h that the game solves R

m

st
onn

n

restri
ted to U �V in k rounds. The 
onsiderations above prove the following

Lemma 2 If there is an (n; `; �; Æ)-game of length k, then there also is an

(n; `;

�

2

;

Æ

2

)-game of length k � 1.

The following lemma is the heart of the argument:

Lemma 3 If there is an (n; `; �; Æ)-game of length k, and r is su
h that

100`

�

�

r �

n

100`

and Æ � 2

�

3

4

)

n

r

, then there is an (n� r;

`

2

;

p

�

2

;

rÆ

2n

)-game of length k.

PROOF. De�ne a set of random restri
tions R

r

as follows: to 
hoose � 2 R

r

,

�rst 
hoose a set W

�

� [n℄ of size jW

�

j = r randomly and uniformly, and

then 
hoose a 
oloring 


�

: W

�

! f0; 1g randomly and uniformly. Let S

�

:=

fx 2 W

�

; 


�

(x) = 0 g and T

�

:= fx 2 W

�

; 


�

(x) = 1 g. The idea is that �

maps S

�

to s and T

�

to t, and every other node to itself.
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Let U

0

and V

0

be the sets for whi
h the game solves R

m

st
onn

n

, with jU

0

j � �n

`

and jV

0

j � Æ2

n

. De�ne

U

L

:=

�

u 2 [n℄

`

2

;

�

�

�

�

n

u

0

2 [n℄

`

2

; (u; u

0

) 2 U

0

o

�

�

�

�

>

�

4

n

`

2

�

and U

R

analogously. If (u; u

0

) 2 U

0

, then either u 2 U

L

and u

0

2 U

R

, or u =2 U

L

,

or u

0

=2 U

R

. Now at most jU

L

j � jU

R

j elements 
an be of the �rst type, and there


an be at most n

`

2

�

�

4

n

`

2

=

�

4

n

`

elements of ea
h of the latter two types. Hen
e

we get �n

`

� jU

0

j � jU

L

j � jU

R

j +

�

2

n

`

, and thus jU

L

j � jU

R

j �

�

2

n

`

. Therefore

one of U

L

or U

R

has to be of size at least

q

�

2

n

`

2

. W.l.o.g. let it be U

L

.

For a restri
tion � 2 R

r

, let

U

�

:=

�

u 2 U

L

; u 2 ([n℄ nW

�

)

`

2

and 9u

0

2T

`

2

�

(u; u

0

) 2 U

0

�

V

�

:=

n

v 2 f0; 1g

[n℄nW

�

; (v [ 


�

) 2 V

0

o

We obtain a game solving R

m

st
onn

n

restri
ted to U

�

� V

�

as follows: on input

(u; v) 2 U

�

� V

�

, player I 
omputes a ve
tor u

0

2 T

`

2

�

su
h that (u; u

0

) 2 U

0

,

then the players play the original game on input ((u; u

0

); (v [ 


�

)). It remains

to show that there is a � 2 R

r

with jU

�

j �

p

�

2

(n� r)

`

2

and jV

�

j �

rÆ

2n

2

n�r

.

Now the same 
al
ulations as in [2, se
tion 5.2℄ show that ea
h of the inequal-

ities jU

�

j �

p

�

2

(n � r)

`

2

and jV

�

j �

rÆ

2n

2

n�r

holds with probability at least

3

4

.

Hen
e the probability that both inequalities hold is at least

1

2

. �

Theorem 4 For suÆ
iently large n, 



R

(R

m

st
onn

n

) >

1

100

log

2

n.

PROOF. Suppose there is a game solving R

m

st
onn

n

in

1

100

log

2

n rounds, for

some large n, and let ` := n

1

4

. Then in parti
ular, this is an (n; `;

1

4

n

�

1

10

; 1)-

game. We divide the game in

1

10

logn stages of

1

10

logn rounds ea
h.

Lemma 2 applied

1

10

logn times then gives us an (n; `;

1

4

n

�

1

5

; n

�

1

10

)-game having

one stage fewer. Sin
e n is large, the 
onditions of Lemma 3 are met for r =

p

n,

hen
e we obtain an (n�

p

n;

`

2

;

1

4

n

�

1

10

;

1

2

n

�

3

5

)-game having one stage fewer that

the original game.

Repeating this for all the

1

10

logn stages yields an (m; `

0

;

1

4

n

�

1

10

; n

�

3

50

log n�

1

10

)-

game of length 0, where m := n �

1

10

logn

p

n and `

0

:= n

3

20

. Now a game of

length 0 gives the same edge for every pair of inputs. But the number of paths

of length `

0

in [m℄ 
ontaining one parti
ular edge is at most m

`

0

�1

, whereas

the game has to solve the problem for a set of size

1

4

n

�

1

10

m

`

0

. But for large

5



n, the latter quantity is stri
tly larger than the former, hen
e a game solving

R

m

st
onn

n

in

1

100

log

2

n rounds 
annot exist. �

Lemma 1 now gives us the desired lower bound:

Corollary 5 d

R

(st
onn

n

) = 
(log

2

n) and s

R

(st
onn

n

) = n


(log n)

.

Cutting Planes

Cutting Planes (CP ) are a proof system operating with linear inequalities of

the form

P

i2I

a

i

x

i

� k, where the 
oeÆ
ients a

i

and k are integers. The rules

of CP are addition of two inequalities, multipli
ation of an inequality by a

positive integer and the following division rule:

P

i2I

a

i

x

i

� k

P

i2I

a

i

b

x

i

�

l

k

b

m

;

where b is a positive integer that evenly divides all a

i

, i 2 I.

A CP refutation of a set E of inequalities is a derivation of 0 � 1 from the

inequalities in E and the axioms x � 0 and �x � �1 for any variable x, using

the rules of CP . It 
an be shown that a set of inequalities has a CP -refutation

i� it has no f0; 1g-solution.

Cutting Planes 
an be used as a refutation system for propositional formulas in


onjun
tive normal form, as shown in [4℄: note that a 
lause

W

i2I

x

i

_

W

j2J

:x

j

is

satis�able i� the inequality

P

i2I

x

i

�

P

j2J

x

j

� 1�jJ j has a f0; 1g-solution. It

was also shown in [4℄ that CP 
an simulate resolutions. For more information

on Cutting Planes, see the referen
es [1,5,10℄.

A CP -refutation is 
alled tree-like if every line in the refutation is used at

most on
e as a premise to an appli
ation of a rule, so that the derivation


an be represented as a tree, otherwise it is 
alled dag-like. Exponential lower

bounds for tree-like CP -refutations were given in [5℄. As there are no upper

bounds known for the 
lauses 
onsidered, that paper left open the question

whether tree-like CP 
an polynomially simulate dag-like CP , i.e. whether for

some polynomial p(x), every set of inequalities that has a CP refutation of

size s also has a tree-like CP refutation of size p(s).

The question was answered for the subsystem CP

�

, where every 
oeÆ
ient

appearing in a refutation must be bounded by a polynomial in the size of

6



the original inequalities, in [1℄: they showed that CP

�


annot be simulated by

tree-like CP

�

. We shall show the same for CP with arbitrary 
oeÆ
ients.

Cutting Planes refutations are linked to monotone real 
ir
uits by the following

interpolation theorem due to Pudl�ak:

Theorem 6 (Pudl�ak [10℄) Let �p; �q; �r be disjoint ve
tors of variables, and let

A(�p; �q) and B(�p; �r) be sets of inequalities in the indi
ated variables su
h that

the variables �p either have only nonnegative 
oeÆ
ients in A(�p; �q) or have only

nonpositive 
oeÆ
ients in B(�p; �r).

Suppose there is a CP -refutation R of A(�p; �q)[B(�p; �r). Then there is a mono-

tone real 
ir
uit C(�p) of size O(jRj) su
h that for any ve
tor �a 2 f0; 1g

j�pj

C(�a) = 0 ! A(�a; �q) is unsatis�able

C(�a) = 1 ! B(�a; �r) is unsatis�able

Furthermore, if R is tree-like, then C(�p) is a monotone real formula.

The following sets of 
lauses representing st-
onne
tivity were used in [3℄ to

separate tree-like from dag-like resolutions, using the lower bound of [7℄ and

an interpolation theorem for resolution similar to Theorem 6 from [9℄: In the

set A(�p; �q), the variables �q 
ode a path from s to t in the graph given by

propositional variables p

fi;jg

with i; j 2 N , where we set s = 0 and t = n + 1:

q

0;s

; q

n+1;t

:q

i;j

_ :q

i;k

for 0 � i � n+ 1 and 0 � j < k � n+ 1

q

i;1

_ : : : _ q

i;n

for 1 � i � n

:q

i;j

_ :q

i+1;k

_ p

fj;kg

for 0 � i < n+ 1 and j; k 2 N with j 6= k :

In the set B(�p; �r), the variables �r 
ode a partition of N into two 
lasses with s

and t being in di�erent 
lasses and no edge between nodes in di�erent 
lasses.

It is given as

:r

s

; r

t

; :r

i

_ :p

fi;jg

_ r

j

for i; j 2 N with i 6= j :

Observe that the variables p

fi;jg

o

ur only positively in A(�p; �q) and only

negatively in B(�p; �r), whi
h makes Theorem 6 appli
able. Now the formula

C(�p) obtained from a tree-like CP -refutation in this 
ase has to 
ompute

st
onn

n

, and hen
e has to be of size n


(log n)

, whi
h gives:

Theorem 7 A tree-like CP -refutation of the (inequalities representing) 
lauses

A(�p; �q) [B(�p; �r) has to be of size n


(log n)

.

On the other hand, it was shown in [3℄ that the 
lauses A(�p; �q)[B(�p; �r) have

dag-like resolution refutations of size O(n

4

). Hen
e tree-like Cutting Planes

7




annot polynomially simulate dag-like resolutions, and in parti
ular, they 
an-

not polynomially simulate dag-like Cutting Planes.
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