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Abstract

Using a notion of real communication complexity recently introduced by J. Krajicek,
we prove a lower bound on the depth of monotone real circuits and the size of
monotone real formulas for st-connectivity. This implies a super-polynomial speed-
up of dag-like over tree-like Cutting Planes proofs.
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Introduction

A monotone real circuit is a circuit computing with real numbers in which
every gate computes a nondecreasing binary real function. This class of circuits
was introduced in [10]. We require that such a circuit outputs 0 or 1 on every
input of 0’s and 1’s only. Hence, monotone real circuits are a generalization of
monotone boolean circuits, which was shown to be strictly more powerful in
[11].

The depth and size of a monotone real circuit are defined as usual, and we
call it a formula if every gate has fan-out at most 1.

We generalize the lower bounds on the depth of monotone boolean circuits and
the size of monotone boolean formulas for st-connectivity of [7] to monotone
real circuits. By the main result of [10], this also implies a super-polynomial
lower bound on the size of tree-like Cutting Planes proofs. Together with an
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upper bound from [3], this separates tree-like Cutting Planes from their dag-
like counterparts, answering an open question from [5] .

We denote by dg(f) the minimal depth of a monotone real circuit computing
f, and by sg(f) the minimal size of a monotone real formula computing f.
For a natural number n, [n] denotes the set {1,... ,n}.

Real Communication Complexity

We recall the notion of real games and real communication complexity intro-
duced in [8]. Let U,V be finite sets. A real game on U,V is played by two
players I and I1, where I computes a function f; : U x {0,1}* — R and IT
computes a function f;; : V x {0,1}* — R. Given inputs u € U, v € V, the
players generate a sequence w of bits as follows:

Wo =\

w0 if fr(u, wg) > frr(v, wy)

w1 else

W1 =

Let I be another finite set, and let R C U x V x I be a multifunction, i.e.
VueUVYveV Fiel (u,v,i) € R. Its real communication complezity ccr(R) is
the minimal number k£ such that there is a real game on U,V and a function
g:{0,1}* — I such that

VueUYveV (u,v,g(wg)) € R .

If this holds then we also say that the game in question solves R in k rounds.

Let f:{0,1}" — {0,1} be a monotone boolean function, let U := f~'(1) and
V := f71(0), and let the multifunction Ry C U x V x [n] be defined by

(u,v,) € Ry iff w;=1andv; =0.
Then there is a relation between the real communication complexity of R; and
the depth of a monotone real circuit or the size of a monotone real formula

computing f, similar to the boolean case:

Lemma 1 (Krajicek [8]) Let f be a monotone boolean function. Then

cer(Ry) < de(f)  and  cer(Ry) <logy)y sr(f) -



PROOF. Let the value at gate G on input u € U be greater than the value
at G on input v € V. As the function computed by G is nondecreasing, the
same must hold for at least one of the gates immediately below G. By playing
the value of, say, the left gate below G on input v and v, respectively, the
players can determine for which of the two gates this is the case. Hence given
a circuit of depth k£ computing f, the players can find an input gate ¢ with
u; > v; in k rounds. This proves the first inequality.

For the second inequality, let f(z) be a formula of size s with f(u) > f(v).
The players determine a subformula h(z) with §|f(z)| < |h(z)] < 3|f(2)],
then play the values h(u) and h(v), respectively. If h(u) > h(v), they continue
with the formula h(z). Otherwise let f(x) = f'(x,h(x)), then the players
continue with the formula f'(x,¢), where ¢ is the constant h(u) for player I
and h(v) for player I1 respectively. After log, 5 s Tounds, the players will have
found an input ¢ with u; > v;. [

For a monotone boolean function f, let min(f) denote the set of minterms of
f, and max(f) the set of maxterms of f. Since f is monotone, we can represent
these as sets of index sets. We define the relation R}' C min(f) x max(f) x [n]
by

(p,q.i) € RT iff iepngq.

Then as in the boolean case (see [6]), a real game solving R, can be used to
solve R'", and vice versa, hence we have

cer(RT') = cer(Ry)

Let stconn, be the monotone function on (";“2) variables, representing the

edges of an undirected graph G on the set of nodes N := [n] U {s,t}, that
gives 1 if there is a path in G from s to ¢, and 0 else. As an example, we shall

give a real game for R , giving an upper bound ccg(R™,,,.,, ) = O(log” n).

m
stconn,,

A minterm of stconn,, is a simple path from s to ¢, and a maxterm can be
represented by a coloring of N by two colors 0,1 such that s gets color 0 and
t gets color 1. The aim of the game is to find a bicolored edge in the path.

Let m be the number of the middle node of I'’s path. For [logn| rounds, player
I keeps playing m, while player I'T uses binary search to determine m. After
that, both players know m, and I plays 0 while IT plays m’s color, thereby
communicating that color to I. If the color is 1, then the players repeat this
procedure with the half of the path from s to m, otherwise with the half from
m to t. After at most [logn| repetitions, the length of the current path is 1,
hence the players have found a bicolored edge.



We shall show that also ccg (R7.,, ) = 2(log” n), thus by Lemma 1, monotone

real circuits for stconn, have to have depth Q(log®n), and monotone real

formulas for stconn,, are of size nfogn),

The Lower Bound

The proof of the lower bound on ccg(R}},,,, ) follows closely the proof of the
Karchmer/Wigderson monotone circuit depth lower bound as presented in |2,

section 5.2].

Let a game solving R C U X V x I in k+ 1 rounds be given. Let «, := fr(u, \)
and 3, := fr;1(v, ). W.Lo.g. we can assume that o, # s for u # «' € U and
By # By for v # v" € V. Now consider a matrix whose columns are indexed by
the a,’s and whose rows are indexed by the 3,’s, both in increasing order, and
let the entry in position (a,, 3,) be 0 if a,, > 3, and 1 else. Then it is easily
seen that either the upper right [%1 X [%W—wbmatrix is entirely filled with
0’s, or the lower left ['—[2]‘1 X [%W—Smeatrix is entirely filled with 1’s. Hence
there are U' C U and V' C V with [U’| > $|U| and [V’| > $|V| such that
for every input (u,v) € U’' x V', the first bit played is the same, say b. Hence
there is a game that solves R restricted to U’ x V' in k rounds: pretend that
in the first round, the bit b was played, and then continue as in the original

game. This motivates the following definition:

We call a real game an (n, £, €, §)-game of length k&, if there is a set U of paths
from s to ¢ of length £+ 1, represented as vectors in [n]’, and a set V' C {0, 1}
of colorings with |U| > en’ and |V| > §2" such that the game solves R7, -
restricted to U x V in k rounds. The considerations above prove the following

Lemma 2 If there is an (n,l,€,0)-game of length k, then there also is an

(n, 0, %,2)-game of length k — 1.

The following lemma is the heart of the argument:

Lemma 3 If there is an (n, (, €,8)-game of length k, and r is such that %M <

r < jo6: and & > 2(%)%, then there is an (n —r, %, %, 29)-game of length k.

PROOF. Define a set of random restrictions R, as follows: to choose p € R,,
first choose a set W, C [n] of size |W,| = r randomly and uniformly, and
then choose a coloring ¢, : W, — {0,1} randomly and uniformly. Let S, :=
{zeW,;c,(z)=0} and T, := {x € W,; ¢,(x) =1}. The idea is that p
maps S, to s and T, to ¢, and every other node to itself.



Let Uy and Vj be the sets for which the game solves R}

stconny? with |UO| Z enf
and V5| > §2™. Define

}

and Ug analogously. If (u, u’) € Uy, then either u € Uy, and u' € Ug, or u ¢ Uy,
or u' ¢ Ugr. Now at most |Up|- |Ug| elements can be of the first type, and there

wles
ol

n

UL::{UE[n] ;

{u' € [n]é ; (u,u') € Ug}‘ >

A~ m

can be at most 1 - iné = iné elements of each of the latter two types. Hence
we get en’ < |Up| < |Up|- |Ug|+ $n', and thus |Up| - |[Ug| > £n’. Therefore
one of U;, or Ui has to be of size at least \/gné W.l.o.g. let it be Uy.

For a restriction p € R,, let

L
U, := {u e Ur; u € ([n] \Wp)é and ' €Ty (u,u’) € U[)}
V= {ve{0,}""; (wuc,) € Vi }

We obtain a game solving R}, restricted to U, x V, as follows: on input

L
(u,v) € U, x V,, player I computes a vector u' € T such that (u,u’) € Uy,
then the players play the original game on input ((u,u'), (vU¢,)). It remains
to show that there is a p € R, with |U,| > %(n —7)% and V,| > Lion—r,

Now the same calculations as in [2, section 5.2] show that each of the inequal-
ities |U,| > %(n —7)% and |V,| > £227=" holds with probability at least 2.
Hence the probability that both inequalities hold is at least % O

) > - log?n.

Theorem 4 For sufficiently large n, ccg(RZ; 00

stconn,,

m : 1 2
Stconn, 1N 795 log” n rounds, for

PROOF. Suppose there is a game solving R
some large n, and let ¢ := ni. Then in particular, this is an (n, ¢, in*TIO, 1)-

game. We divide the game in % log n stages of % log n rounds each.

Lemma 2 applied % log n times then gives us an (n, £, in’%, n’TIO)—game having

one stage fewer. Since n is large, the conditions of Lemma 3 are met for r = /n,
. 1 3 .

hence we obtain an (n—+/n, £, 1n=%, 1n~%)-game having one stage fewer that

1204 D)
the original game.

L
10

game of length 0, where m :=n — % logny/n and ' := n2. Now a game of
length 0 gives the same edge for every pair of inputs. But the number of paths

of length ¢' in [m] containing one particular edge is at most m‘ ', whereas

the game has to solve the problem for a set of size in_%omll. But for large

Repeating this for all the — logn stages yields an (m, ', in’l_lo, n’s%log”’l_lo)—



n, the latter quantity is strictly larger than the former, hence a game solving

m : 1 2 .
R onn, M 155 10g” n rounds cannot exist. [

Lemma 1 now gives us the desired lower bound:

Corollary 5 dg(stconn,) = Q(log®n) and sg(stconn,) = n?1°8"),

Cutting Planes

Cutting Planes (C'P) are a proof system operating with linear inequalities of
the form >,.; a;x; > k, where the coeflicients a; and k are integers. The rules
of C'P are addition of two inequalities, multiplication of an inequality by a
positive integer and the following division rule:

Yieraiv; > k
i k]’
Dier T > [51

where b is a positive integer that evenly divides all a;, i € I.

A CP refutation of a set E of inequalities is a derivation of 0 > 1 from the
inequalities in F and the axioms x > 0 and —z > —1 for any variable x, using
the rules of C'P. It can be shown that a set of inequalities has a C' P-refutation
iff it has no {0, 1}-solution.

Cutting Planes can be used as a refutation system for propositional formulas in
conjunctive normal form, as shown in [4]: note that a clause V;c; z;v Vo s —2; is
satisfiable iff the inequality Y;c; 2, — 3 ey 2; > 1—|J| has a {0, 1}-solution. It
was also shown in [4] that C'P can simulate resolutions. For more information
on Cutting Planes, see the references [1,5,10].

A C'P-refutation is called tree-like if every line in the refutation is used at
most once as a premise to an application of a rule, so that the derivation
can be represented as a tree, otherwise it is called dag-like. Exponential lower
bounds for tree-like C'P-refutations were given in [5]. As there are no upper
bounds known for the clauses considered, that paper left open the question
whether tree-like C'P can polynomially simulate dag-like C'P, i.e. whether for
some polynomial p(z), every set of inequalities that has a C'P refutation of
size s also has a tree-like C'P refutation of size p(s).

The question was answered for the subsystem CP* where every coefficient
appearing in a refutation must be bounded by a polynomial in the size of



the original inequalities, in [1]: they showed that C'P* cannot be simulated by
tree-like C'P*. We shall show the same for C'P with arbitrary coefficients.

Cutting Planes refutations are linked to monotone real circuits by the following
interpolation theorem due to Pudlak:

Theorem 6 (Pudldk [10]) Let p, q, T be disjoint vectors of variables, and let
A(p,q) and B(p,T) be sets of inequalities in the indicated variables such that
the variables p either have only nonnegative coefficients in A(p, q) or have only
nonpositive coefficients in B(p,T).

Suppose there is a C P-refutation R of A(p,q)UB(p,T). Then there is a mono-
tone real circuit C(p) of size O(|R|) such that for any vector a € {0, 1}/7!

Ca)=0 — A(a,q) is unsatisfiable
C(a)=1 — B(a,r) is unsatisfiable

Furthermore, if R is tree-like, then C(p) is a monotone real formula.

The following sets of clauses representing st-connectivity were used in [3] to
separate tree-like from dag-like resolutions, using the lower bound of [7] and
an interpolation theorem for resolution similar to Theorem 6 from [9]: In the
set A(p, ), the variables ¢ code a path from s to ¢ in the graph given by
propositional variables py; j1 with 4, j € N, where we set s =0 and t =n + 1:

q0,s5 n+1,t
G5 V TGk for0<i<n+land0<j<k<n+1
Qi1 Vv ... V{Qin forl1 <i<n

i gV TGtk V Dk} for0<i<n+1andj ke N with j #Ek.

In the set B(p,T), the variables 7 code a partition of N into two classes with s
and ¢ being in different classes and no edge between nodes in different classes.
It is given as

s, e, —ryvoppgy vy forid,j € N witha # 5.

Observe that the variables py; ;3 occur only positively in A(p,§) and only
negatively in B(p,7), which makes Theorem 6 applicable. Now the formula
C(p) obtained from a tree-like C'P-refutation in this case has to compute
stconn,, and hence has to be of size n21°8™) which gives:

Theorem 7 A tree-like C P-refutation of the (inequalities representing) clauses
A(p,q) U B(p,7) has to be of size n¥1o8m),

On the other hand, it was shown in [3] that the clauses A(p,q) U B(p, T) have
dag-like resolution refutations of size O(n*). Hence tree-like Cutting Planes



cannot polynomially simulate dag-like resolutions, and in particular, they can-
not polynomially simulate dag-like Cutting Planes.
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