
An Elementary Fragment of Second-Order Lambda

Calculus

KLAUS AEHLIG

and

JAN JOHANNSEN

Ludwig-Maximilians-Universität München

A fragment of second-order lambda calculus (System F) is defined that characterizes the elemen-
tary recursive functions. Type quantification is restricted to be non-interleaved and stratified,
i.e., the types are assigned levels, and a quantified variable can only be instantiated by a type of
smaller level, with a slightly liberalized treatment of the level zero.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—computational logic; lambda calculus and related systems; F.2.2 [Analy-

sis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—
complexity of proof procedures

General Terms: Theory

Additional Key Words and Phrases: elementary recursive functions, complexity, lambda calculus,
second order logic

1. INTRODUCTION AND RELATED WORK

Machine-independent characterizations of computational complexity classes are at
the core of the research area called Implicit Computational Complexity which has
received a lot of attention recently. The goal is to give natural descriptions of
these classes by conceptual means, mostly derived from mathematical logic. In
particular it is desirable to go without any explicit mention of bounds or ad hoc
initial functions.

The second-order, or polymorphic lambda calculus (System F) [Girard 1971;
Reynolds 1974] provides a particularly natural framework for this purpose, as all
data-types, such as natural numbers, binary words or trees, can be encoded therein
without the use of constructors or initial functions. Unfortunately, full system F
has a computational strength far beyond anything reasonable in this context: all
functions provably total in second-order arithmetic can be defined.

Authors’ addresses: Klaus Aehlig, Mathematisches Institut, Ludwig-Maximilians-Universität

München, Theresienstraße 39, 80333 München, Germany; Jan Johannsen, Institut für Informatik,
Ludwig-Maximilians-Universität München, Oettingenstraße 67, 80538 München.
Klaus Aehlig was supported by the DFG Graduiertenkolleg 301 “Logik in der Informatik”. Jan
Johannsen was partially supported by the DFG Emmy Noether Programme grant Jo 291/2-2.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 1529-3785/2004/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004, Pages 1–13.

2 · K. Aehlig and J. Johannsen

Recently there have been approaches to define fragments of system F with a
weaker computational strength. Altenkirch and Coquand [2001] proposed a frag-
ment characterizing the functions provably recursive in Peano Arithmetic by re-
stricting type abstraction to first-order types in a single variable. Earlier, Leivant
[1991] has used stratification of type abstraction to obtain a fragment characterizing
the fourth level E4 of the Grzegorczyk hierarchy [Grzegorczyk 1953].

Here we give a characterization of the third level E3 of the Grzegorczyk hierarchy,
that is, the Kalmár elementary recursive functions. In order to achieve this, we use
a stratification of type abstractions into only two levels. This alone would give
a system in which all definable functions are elementary recursive. However, the
class would presumably not be exhausted, as, for example, subtraction seems to be
undefinable.

Therefore we use a primitive product type former and allow a quantified variable
of the lowest level to be instantiated by a finite product of itself. Note that product
types are definable in system F , however using an additional type quantifier and
thus disturbing our stratification.

Different restrictions of system F based on linear logic, and characterizing also
the elementary recursive functions, as well as polynomial time, were introduced by
Girard [1998] and further elaborated by several authors [Asperti and Roversi 2002;
Danos and Joinet 2003].

2. DEFINITIONS

The elementary recursive functions are a natural subclass of the primitive recursive
functions that was first defined by Kalmár [1943]. A function f(x, ~y) is a bounded
sum (a bounded product), if it is defined from g(x, ~y) by

f(x, ~y) =

x−1∑

i=0

g(i, ~y)
(

resp. f(x, ~y) =

x−1∏

i=0

g(i, ~y)
)

.

The elementary recursive functions are the least class of number-theoretic functions
that contains the constant 0, all projections, successor, addition, modified subtrac-
tion x−̇y := max(x− y, 0) and multiplication, and is closed under composition and
bounded sums and products.

It is well-known that the elementary recursive functions coincide with the third
level E3 of the Grzegorczyk hierarchy [Grzegorczyk 1953], and that they coincide
as well with the functions computable in time or space bounded by an elementary
recursive function (see e.g. [Clote 1999]).

The functions λn . 2k(n) for k ∈ N are inductively defined as follows: 20(n) = n
and 2k+1(n) = 22k(n). For every fixed k, this function is elementary recursive,
but the binary function λkn . 2k(n) is not: λk . 2k(1) eventually majorizes every
elementary recursive function.

2.1 The system.

We now give a formal definition of our system, by means of a type assignment
calculus. So terms are only the terms of the untyped lambda calculus with pairs,
i.e., given by the grammar

r, s ::= x | rs | λx . r | 〈r, s〉 | rL | rR ,

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

An Elementary Fragment of Second-Order Lambda Calculus · 3

where x ranges over an infinite set of variables. We define types of level n for a
natural number n. However, we will use only the types of level at most 2. Our type
variables also come in different levels; let αn range over variables of level n.

Definition 2.1. The types τn of level n and the flat types τ ′
0 of level 0 are induc-

tively given by the following grammar:

τn := αn | τn → τn | τn × τn | ∀αk.τk

τ ′
0 := α0 | τ ′

0 × τ ′
0

where k < n and τk does not contain any free variables other than αk.

Note that this notion of the level of a type differs from the notion commonly used
in the literature, so it should more correctly be called modified level. However, since
the usual notion is not used in the present work, for sake of brevity we just use the
term level for the modified notion.

Also note that with respect to our notion of the level of a type, there are no
closed types of level 0.

2.2 Contexts and Judgments.

A context Γ is a set of pairs x : τ of variables and types, where the variables
occurring in a context have to be distinct. A typing judgment is of the form
Γ ⊢ r : τ and expresses that r has type τ in the context Γ. The typing rules are:

(var)
Γ ⊢ x : τ

if x : τ occurs in Γ

(→I)
Γ, x : σ ⊢ r : ρ

Γ ⊢ λx . r : σ → ρ
(→E)

Γ ⊢ r : σ → ρ Γ ⊢ s : σ

Γ ⊢ rs : ρ

(×I)
Γ ⊢ r : ρ Γ ⊢ s : σ

Γ ⊢ 〈r, s〉 : ρ × σ

(×E1)
Γ ⊢ r : σ × ρ

Γ ⊢ rL : σ
(×E2)

Γ ⊢ r : σ × ρ

Γ ⊢ rR : ρ

(∀I)
Γ ⊢ r : τk

Γ ⊢ r : ∀αk.τk

if αk does not occur free in Γ

(∀E1)
Γ ⊢ r : ∀αk.τk

Γ ⊢ r : τk[αk := σℓ]
if ℓ ≤ k and σℓ is closed

(∀E2)
Γ ⊢ r : ∀α0.τ0

Γ ⊢ r : τ0[α0 := σ′
0]

where σ′
0 is flat type.

We will tacitly use the obvious fact that Γ ⊢ r :τ holds only if all the free variables of
r are assigned a type in Γ. The rules are formulated in such a way that weakening
is admissible. By a simple induction on the derivation one verifies the following.

Proposition 2.2 (Weakening). If Γ ⊆ Γ′ and Γ ⊢ r : τ , then Γ′ ⊢ r : τ .

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

4 · K. Aehlig and J. Johannsen

2.3 Reductions.

Our system is equipped with the usual reductions of lambda calculus with pairs. Let
❀ be the reflexive and transitive closure of the reduction given by the compatible
closure of the conversions below, i.e., by allowing application of these conversions
to arbitrary subterms.

(λx . r)s 7→ r[x := s]

〈r, s〉L 7→ r

〈r, s〉R 7→ s .

We denote the induced congruence relation by =β, i.e., =β is the symmetric and
transitive closure of ❀. For technical reasons, in some proofs we will also need
the notion of βη-equality, denoted by =βη. It is defined like =β , but based on the
conversions above together with η-conversion

λx . tx 7→ t

with the proviso that x is not free in t.
It is easily verified that our reductions preserve typing.

Proposition 2.3 (Subject Reduction). If Γ ⊢ r : τ and r ❀ r′, then Γ ⊢
r′ : τ .

2.4 Statement of the main result.

For every type τ , we define the type

τ∗ := (τ → τ) → (τ → τ) .

For a natural number n, the Church numeral n is λfx . fnx, it can have type τ∗ for
every τ . The types of natural numbers are Nat0 := ∀α0.α0

∗ and Nat1 := ∀α1.α1
∗.

It can be shown that the only closed normal inhabitants of the types Nati are the
Church numerals, and the identity combinator id := λx . x, which is equivalent to
the numeral 1 under η-conversion.

A function f : N
k → N is representable, if there is a term tf such that

⊢ tf : Natk1 → Nat0 and for all ~n ∈ N
k, it holds that tf~n =β f(~n). We shall

prove below, as Corollary 4.16, that the representable functions are exactly the
elementary recursive functions.

2.5 Notation.

As usual, lists of notations for terms, numbers etc. that only differ in successive
indices are denoted by leaving out the indices and putting an arrow over the nota-
tion. It is usually obvious where to add the missing indices, otherwise we add dots
wherever an index is left out. We use one dot if the index runs with the innermost
arrow, two dots if the index runs with the next innermost arrow etc., so that e.g.
the expression

−−−−→
t·
−−→n··,·

stands for a sequence of the form

t1n1,1 . . . n1,k1
, . . . , trnr,1 . . . nr,kr

.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

An Elementary Fragment of Second-Order Lambda Calculus · 5

3. COMPLETENESS

In this section we show one direction of our claim, namely we show that every
elementary recursive function can be represented by a term. To start, it is easy to
check that the usual basic arithmetic functions can have the following types

suc := λnsz . s(nsz) : τ∗ → τ∗

add := λmnsz . ms(nsz) : τ∗ → τ∗ → τ∗

mult := λmns . m(ns) : τ∗ → τ∗ → τ∗

for every τ . We use these to program a downward typecast, that is a function

↓ := λn . n suc 0 : τ∗∗ → τ∗

with the property ↓n =β n. Note that ↓ also has the type Nat0
∗ → Nat0, since

suc can be typed as Nat0 → Nat0 by instantiating the argument n : Nat0 as n : α0
∗.

Note moreover that add and mult, by a similar argument, can also have type Nat0 →
Nat0 → Nat0.

The predecessor can be implemented of type Nat0 → Nat0 as follows: in the
context where we have variables s : α0 → α0 and z : α0, as abstract successor and
zero, we get the term P := λp . 〈s(pL), pL〉 of type (α0 ×α0) → (α0 ×α0), such that

the n-fold iteration of P applied to 〈z, z〉 reduces to 〈snz, sn−̇1z〉, for every n ≥ 0.
Thus the argument n : Nat0 is instantiated as n : (α0 × α0)

∗
by the rule (∀E2), and

we get

n : Nat0 ⊢ λsz . nP 〈z, z〉R : α0
∗

and an application of (∀I) and (→I) yields that the predecessor

pred := λnsz . nP 〈z, z〉R

is typeable as pred : Nat0 → Nat0.
We obtain subtraction sub := λmn . n predm by iterating the predecessor, of type

sub : Nat0 → Nat0
∗ → Nat0. Obviously, for m, n ∈ N we have sub m n =βη m−̇n.

Testing for zero can also be easily programmed as χ0 := λnxy . n(λz . y)x, which
has type χ0 : Nat0 → α0 → α0 → α0, and the operational semantics if n = 0 then x
else y, i.e., with the properties χ0 0x y =β x and χ0 n + 1x y =β y. To obtain the
typing, we instantiate the input n : Nat0 as n : α0

∗ by (∀E2).
Next we define a function T0 such that for natural numbers n and m, we have

T0 0m =βη m, and T0 n + 1m =βη m + 1, as

T0 := λnxszs′z′ . χ0 n(s(xsz)s′z′)(xszs′z′)

The term T0 can have the type Nat0 → Nat0
∗ → Nat0

∗, which is verified as follows:
in the context x :Nat0

∗, s :Nat0 → Nat0, z :Nat0 we obtain the terms xsz and s(xsz)
of type Nat0. These are instantiated with the rule (∀E2) as being of type α0

∗, and
with s′ : α0 → α0 and z′ : α0 we get s(xsz)s′z′ : α0 and xszs′z′ : α0. Therefore we
obtain

Γ ⊢ λs′z′ . χ0 n(s(xsz)s′z′)(xszs′z′) : α0
∗ ,

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

6 · K. Aehlig and J. Johannsen

where Γ is the context n :Nat0, x :Nat0
∗, s :Nat0 → Nat0, z :Nat0, and an application

of (∀I) followed by several (→I) gives the claimed typing of T0. It is easily verified
by straightforward calculations that T0 has the claimed operational behaviour.

We use T0 to implement an upward typecast that works with the aid of a large
parameter of suitable type, i.e., a term ↑:Nat0

∗∗ → Nat0 → Nat0
∗ with the property

that ↑m n =βη n as long as m ≥ n. This can be implemented as

↑ := λmn . m
(
λx . T0(sub nx)x

)
0 ,

i.e., the function λx . T0(sub nx)x, which operationally behaves as

if x < n then x + 1 else x,

is iterated m times, starting at 0, to the effect that in the first n iterations, the
value is increased by 1, and thereafter the value is n, and thus remains the same.

Now by use of the typecast, a more useful type-homogeneous subtraction, but
again with the aid of a large parameter, can be defined as

s̃ub := λmnk . ↑m(sub(↓n)k) : Nat0
∗∗ → Nat0

∗ → Nat0
∗ → Nat0

∗ ,

with the property that s̃ub m nk =βη n−̇k as long as m ≥ n−̇k.

Definition 3.1. For a type τ , let τ (0) := τ , and τ (k+1) := (τ (k))
∗
.

To iterate the above construction, assume we have a subtraction

s̃ubk : Nat0
(k+1) → Nat0

(k) → Nat0
(k) → Nat0

(k) ,

and note that T0 can have type Nat0
(k) → Nat0

(k+1) → Nat0
(k+1) for every k, since

χ0 can have type Nat0
(k+1) → Nat0

(k) → Nat0
(k) → Nat0

(k) (in fact, χ0 can have
any type of the form τ∗ → τ → τ → τ). Thus we can program an upward typecast

↑k := λmn . m
(
λx . T0(s̃ubk(↓m)n(↓ x))x

)
0

of type ↑k : Nat0
(k+2) → Nat0

(k) → Nat0
(k+1), which again can be used to define a

subtraction

s̃ubk+1 := λmn1n2 . ↑k m
(
s̃ubk(↓m)(↓n1)(↓n2)

)

of type Nat0
(k+2) → Nat0

(k+1) → Nat0
(k+1) → Nat0

(k+1). Thus inductively we get

subtractions s̃ubk and upward typecasts ↑k for every k. We also define iterated

upward typecasts ↑ℓ
k : Nat0

(k+ℓ+1) → Nat0
(k) → Nat0

(k+ℓ) by

↑0
k := λmn . n and ↑ℓ+1

k := λmn . ↑k+ℓ m(↑ℓ
k(↓m)n) .

From now on we will omit the index k in ↑k, ↑ℓ
k and s̃ubk when it can be inferred

from the context. We are ready to state our main lemma.

Lemma 3.2. For every elementary recursive function f : N
n → N and k ∈ N,

there are a closed term t and ℓ, r ∈ N and a list ~η of types, where each η is of the

form η ::= Nat0
(k) | η∗ | (η × η)∗, such that

⊢ t : ~η →
−−−−−−−→
Nat0

(k+ℓ) → Nat0
(k)

and for all ~n ∈ N
n, t ~L~n =βη f(~n) as long as L ≥ 2r(

∑
~n).

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

An Elementary Fragment of Second-Order Lambda Calculus · 7

Note that we plug in the same numeral L for all the arguments of the types ~η. Also
note that only simple types over Nat0 are used as these types ~η, and this is the only
property used in the application and proof. A statement similar to this lemma was
offered by Simmons [2004] as a characterization of the Kalmár elementary recursive
functions.

Before we prove the main lemma, we shall first use it to derive the main theorem
of this section, the representability of all elementary recursive functions.

Theorem 3.3. For every elementary recursive function f : N
n → N there is a

closed term T : Natn1 → Nat0 such that T ~n =βη f(~n) for all ~n ∈ N
n.

Proof. From the lemma for f and k = 1, we obtain a term t and ℓ, r, ~η with
the properties stated there. As we can always move to bigger values of r, we may
without loss of generality assume r to be at least 2 and even.

Let s := r/2. For each type ηi, instantiate each input n : Nat1 as n : ηi
(s),

which is possible by (∀E1) since ηi
(s−1) is a closed type of level 1. Now use add :

ηi
(s) → ηi

(s) → ηi
(s) to compute S :=

∑
~n of type ηi

(s). Next form the term N :=
(. . . ((S2)2) . . . 2), with r occurrences of the numeral 2, of type ηi.

Instantiate the inputs ~n again by (∀E1) at the closed, level 1 type Nat0
(ℓ), and

form T := λ~n . ↓(t ~N ~n). As for every input ~n, N evaluates to a numeral L with
L ≥ 2r(

∑
~n), the term T has the required properties, by the lemma.

Corollary 3.4. For every elementary recursive function f : N
n → N there is a

closed term T : Natn1 → Nat0 such that T ~n ❀ f(~n) for all ~n ∈ N
n.

Proof. Take λ~nsz . T~nsz for the term T obtained from the theorem. For every
~n consider the β-normal of (λ~nsz . T~nsz)~n, which is a closed, β-normal term of
type N, starting with two abstractions, hence a numeral. So it has to be f(~n),
for otherwise two distinct numeral would be βη-equal, which by the well known
confluence of lambda calculus with pairs is not the case.

Proof of the Lemma. We have produced terms representing the base func-
tions successor, addition, subtraction and multiplication above. For S, + and ×,
we can set ℓ = r = 0 and ~η empty for any k.

Concerning subtraction −̇, for k = 0 we use the term λnk . sub(↓n)k and set

r = 0, ℓ = 1 and ~η empty, and for k ≥ 1 we use s̃ubk, and we set ℓ = r = 0 and ~η
contains the single type Nat0

(k+1).
In the following, note that by the properties of ↓, whenever we have a term t of

type Nat0
(k+ℓ), we can obtain a term ↓ℓ t with the same value of type Nat0

(k).

For closure under composition, let f(~n) = g(
−−−→
h·(~n)) and k be given. By the

induction hypothesis for g and k, we have a term tg, numbers ℓg and rg and a list
−→η of types such that the claim of the lemma holds for these.

Also, the induction hypothesis for each hi and k+ℓg yields terms ti and ℓi, ri ∈ N

and types −−→η·,i , such that the claim holds for these.
Let ℓ := ℓg + maxi ℓi. Since the functions hi are elementary recursive,

∑
hi(~n)

is also elementary, and therefore there is an s ∈ N such that
∑

i hi(~n) ≤ 2s(
∑

~n).
For variables ~v and −−→w·,i , which we give the types ~η and −−→η·,i , respectively, we set

t := λ~v ~~w ~n . tg ~v

−−−−−−−−−−−−−−−−−→

(t·
−−→w·,··

−−−−−−−−−−→
(↓ℓ−ℓg−ℓ·· n·))

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

8 · K. Aehlig and J. Johannsen

such that t has type ~η → ~~η →
−−−−−−−→
Nat0

(k+ℓ) → Nat0
(k). By the induction hypothesis,

for r := max(rg + s, ~r) we have t ~L
~~L~n =βη f(~n) as long as L ≥ 2r(

∑
~n).

For closure under bounded sums, let f(~n, m) =
∑m−1

i=0 g(~n, i) and k be given. By
the induction hypothesis for g and k + 1, we have a term tg, numbers ℓ and r and
a list ~η of types such that the claim of the lemma holds. Define

χ̃0 := λnxysz . χ0 n (xsz) (ysz)

of type (Nat0
(k+ℓ+1))3 → Nat0

(k+ℓ+1), with the same operational semantics as
χ0, i.e., for i, j ∈ N we have χ̃0 0 i j =βη i and χ̃0 n + 1 i j =βη j. For variables

v : Nat0
(k+ℓ+2), ~w of the types ~η and ~n, m of type Nat0

(k+ℓ+1), we have

T := λxy . χ̃0 (s̃ub v m y)x(add x(↑ℓ v (tg ~w~n y))) ,

of type Nat0
(k+ℓ+1) → Nat0

(k+ℓ+1) → Nat0
(k+ℓ+1).

As long as a sufficiently large numeral L is substituted for the variables v and ~w,
T operationally behaves as

if y < m then x + g(~n, y) else x.

More precisely, L has to be large enough so that all values of g(~n, i) are computed
correctly, that is, L ≥ 2r(

∑
~n + m), and we need L ≥ g(~n, i) for the typecast ↑ℓ to

work properly. Next, we define

P := λp . 〈T (pL) (pR), suc(pR)〉

of type (Nat0
(k+ℓ+1) × Nat0

(k+ℓ+1)) → (Nat0
(k+ℓ+1) × Nat0

(k+ℓ+1)). When this
term, having the operational semantics

〈s, i〉 7→

{
〈s + g(~n, i), i + 1〉 if i < m

〈s, i + 1〉 otherwise,

is iterated starting from the pair 〈0, 0〉, by use of a sufficiently large numeral of type

(Nat0
(k+ℓ+1) × Nat0

(k+ℓ+1))
∗
, the values g(~n, i) for i = 0, . . . , m−1 are summed up

in the left component. Thus to represent f , we define the term

t := λu v ~w~n m . ↓ℓ+1
(
u P 〈0, 0〉L

)

of type

(Nat0
(k+ℓ+1) × Nat0

(k+ℓ+1))
∗
→ Nat0

(k+ℓ+2) → ~η →
−−−−−−−−→
Nat(k+ℓ+1) → Nat0

(k) .

By the induction hypothesis and the construction, we get the property that
t LL ~L~nm =βη f(~n, m) as long as L is sufficiently large. To be more precise,
L needs to satisfy the requirements above for T to be computed correctly, and
L ≥ m in order to complete the summation. Therefore, let s be such that for
every m and i ≤ m we have g(~n, i) ≤ 2s(

∑
~n + m), which exists since g is ele-

mentary recursive, and let r′ := max(r, s). Then all conditions on L are satisfied if
L ≥ 2r′(

∑
~n + m).

Closure under bounded products is shown in the same way, only with add in the
definition of T replaced by mult, and the iteration of P is started at 〈1, 0〉.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

An Elementary Fragment of Second-Order Lambda Calculus · 9

4. SOUNDNESS

In this section we show the other direction of our claim, that is, we show that every
term of type Nat1 → Nat0 denotes a function on Church numerals computable in
elementary space. The main idea is to use the elementary bound for traditional
cut-elimination in propositional logic. In this section we will deal only with types
of level at most 1, so let τ , ρ, σ range over those types within this section. Note
that every instantiation of Nat1 is a type of level 1. Types of level 0 and 1 are
almost simple types (corresponding to propositional logic) with the exception of
quantification of α0. These quantifiers however, can only be instantiated with flat
types of the form α0 × . . . × α0. Hence we can get a notion of cut-rank that
is invariant under generalization and instantiation of level 0, if we ignore pairs.
Fortunately we can do so, as the reduction of a pair-redex reduces the size of the
term and hence does not do any harm. So we define the rank rk(τ) of a type τ
inductively as follows:

rk(α) := 0

rk(ρ × σ) := max(rk(ρ), rk(σ))

rk(ρ → σ) := max(rk(ρ) + 1, rk(σ))

rk(∀α.ρ) := rk(ρ)

We inductively define a relation Γ ⊢m
k r : τ saying that Γ ⊢ r : τ can be derived by

a typing derivation of height m and cut-rank k.

(var)
Γ ⊢m

k x : τ
if x : τ occurs in Γ and m, k ≥ 0

(→I)
Γ, x : σ ⊢m

k r : ρ

Γ ⊢m+1
k λx . r : σ → ρ

(→E)
Γ ⊢m

k r : σ → ρ Γ ⊢m′

k s : σ

Γ ⊢m′′

k rs : ρ
if rk(σ) < k

(×I)
Γ ⊢m

k r : ρ Γ ⊢m′

k s : σ

Γ ⊢m′′

k 〈r, s〉 : ρ × σ

(×E1)
Γ ⊢m

k r : σ × ρ

Γ ⊢m+1
k rL : σ

and analogous for (×E2)

(∀I)
Γ ⊢m

k r : τ

Γ ⊢m+1
k r : ∀α.τ

if α does not occur free inΓ

(∀E2)
Γ ⊢m

k r : ∀α.τ

Γ ⊢m+1
k r : τ [α := σ′]

where σ′ is a flat type.

where m′′ := max(m, m′)+1. As the rules are precisely those of our typing judgment
for types of level at most 1, we have the following property for typing derivations
of level at most 1: if Γ ⊢ r : τ then there are m, k such that Γ ⊢m

k r : τ . On the

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

10 · K. Aehlig and J. Johannsen

other hand, the following property obviously holds and motivates our interest in
this notion.

Proposition 4.1. If Γ ⊢m
k r : τ , then |r| ≤ 2m.

The rules are formulated in such a way that weakening is admissible.

Proposition 4.2 (Weakening). If Γ ⊢m
k r : τ , Γ′ ⊃ Γ, m′ ≥ m, k′ ≥ k then

Γ′ ⊢m′

k′ r : τ .

The next proposition, which can be shown by a trivial induction on τ ′
0 or τ , respec-

tively, explains formally why we can allow instantiations with flat types of level 0
without any harm: the rank is not altered!

Proposition 4.3. For a flat type τ ′
0 of level 0 we have rk(τ ′

0) = 0 and

rk(τ [α0 := τ ′
0]) = rk(τ).

Knowing that the rank of a type is not altered by substituting in a flat type, the
cut-rank, being a rank, is not altered as well, hence an induction on Γ ⊢m

k t : τ
shows the following.

Proposition 4.4. If Γ ⊢m
k t:τ and τ ′

0 is a flat type of level 0 then Γ[α0 := τ ′
0] ⊢

m
k

t : τ [α0 := τ ′
0]

Using this proposition a simple induction on m shows that a derivation Γ ⊢m
k t : τ

can be transformed in such a way that the rule (∀I) is never followed by (∀E2).
So from now on we tacitly assume all derivations to be free from those (∀I)-(∀E2)-
redexes, as for example in the proof of the next proposition, which then is a simple
analysis of the last rule of the derivation.

Proposition 4.5. If Γ ⊢m
k 〈r, s〉L : ρ then Γ ⊢m

k r : ρ and if Γ ⊢m
k 〈r, s〉R : σ then

Γ ⊢m
k s : σ.

As usual, induction on the first derivation shows that cuts can be performed at the
cost of summing up heights.

Lemma 4.6. If Γ, x : ρ ⊢m
k s : σ and Γ ⊢m′

k r : ρ then Γ ⊢m+m′

k s[x := r] : σ.

In order to be able to reduce the cut rank, we first show an “inversion”-lemma,
that is, we show that under certain conditions terms of arrow-type can be brought
into abstraction form.

Lemma 4.7 (Inversion). If rk(Γ) ≤ k and Γ ⊢m
k t : ρ → σ where rk(ρ) ≥ k,

then there are t′ and x with t =β λx . t′ such that Γ, x : ρ ⊢m
k t′ : σ.

Proof. Induction on m and case distinction according to t.
The case t = x~s is impossible, since x would have to occur in Γ and hence

rk(Γ) > k. The case t = 〈r, s〉~t is also impossible since ~t has to be empty, as we
assume t to be free of pair-redexes, and therefore t would have to have a pair type.

So the only remaining case is that t is of the form t = (λy . r)~t. The claim is trivial
if ~t is empty. So without loss of generality we might assume t to be t = (λy . r)s~s,
with y not free in s, ~s. The abstraction λy . r must have been introduced from a

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

An Elementary Fragment of Second-Order Lambda Calculus · 11

derivation Γ, y : τ ⊢m
k r : τ̃ with rk(τ) < k for otherwise the cut would not have been

allowed. Hence, for some m′ with m′ + 2 ≤ m we get

Γ, y : τ ⊢m′

k r~s : ρ → σ and Γ ⊢m′+1
k s : τ

Hence by the induction hypothesis we get a new variable x and a term t′ such

that r~s =β λx . t′ and Γ, y : τ, x : ρ ⊢m′

k t′ : σ. From that we conclude Γ, x : ρ ⊢m′+2
k

(λy . t′)s : σ and note λx . (λy . t′)s =β λx . t′[y := s] = (λx . t′)[y := s] =β (r~s)[y :=
s] = r[y := s]~s =β (λy . r)s~s = t, hence the claim.

Lemma 4.8 (Cut-rank reduction). If Γ ⊢m
k+1 t : ρ, rk(Γ) ≤ k, and rk(ρ) ≤

k + 1 then Γ ⊢2m

k t′ : ρ for some t′ =β t.

Proof. Induction on m. The only interesting cases are (→ I) and (→ E).
Concerning (→I) we are in the situation that Γ ⊢m+1

k+1 λx . r : σ → τ was concluded
from Γ, x : σ ⊢m

k+1 r : τ . With ρ = σ → τ we have rk(Γ) ≤ k, rk(σ) < rk(ρ) ≤ k + 1
and rk(τ) ≤ rk(ρ) ≤ k + 1. Hence an application of the induction hypothesis
yields Γ, x : σ ⊢2m

k r′ : τ from which we conclude Γ ⊢2m+1
k λx . r′ : σ → τ which, by

weakening, suffices, since 2m + 1 ≤ 2m+1.
Concerning the case (→E) we are in the situation that Γ ⊢m+1

k+1 ts:ρ was concluded
from Γ ⊢m

k+1 t : σ → ρ and Γ ⊢m
k+1 s : σ. The only case that is not immediate by

the induction hypothesis is if rk(σ) = k. Then the induction hypothesis gives us
Γ ⊢2m

k t′ :σ → ρ for some t′ =β t. By our assumption rk(Γ) ≤ k, hence by inversion
we get Γ, x : σ ⊢2m

k t′′ : ρ for some new x and t′′ such that λx . t′′ =β t′ =β t. Also

by the induction hypothesis we get Γ ⊢2m

k s : σ. By Lemma 4.6 we get Γ ⊢2m+2m

k

t′′[x := s] : ρ which yields the claim since t′′[x := s] =β (λx . t′′)s =β ts.

Corollary 4.9. If ⊢m
k+1 t : α∗ then ⊢

2k(m)
1 t′ : α∗ for some t′ =β t.

Proposition 4.10. If t normal and Γ ⊢ t : τ ′
0 for some Γ with rk(Γ) ≤ 1 then t

is λ-free.

Proof. Inspection of the typing rules yields that the only rule introducing a λ is
(→I), which creates an arrow-type. In order for the whole term to be of arrow-free
type, the rule (→E) has to be used, either creating a redex or requiring a variable
of rank at least 2.

Definition 4.11. A term t is quasinormal, if every redex in t is of the form 〈r, s〉L
or 〈r, s〉R with λ-free r and s.

We remark the trivial property that the normal form of a quasinormal term t can
be computed in space bound by the length of t. We also note that Proposition 4.10
also holds for quasinormal terms, since the only types discarded by a redex are
those of terms which are λ-free by definition. Moreover, a simple induction on t
shows

Proposition 4.12. If t is quasinormal and s is λ-free and quasinormal then

t[x := s] is quasinormal.

From that proposition, Proposition 4.10 and Lemma 4.6 the following is immedi-
ately obtained.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

12 · K. Aehlig and J. Johannsen

Corollary 4.13. If Γ, x : σ′ ⊢m
1 r:ρ and Γ ⊢m′

1 s:σ′ and r and s are quasinormal

then Γ ⊢m+m′

1 r[x := s] : ρ and r[x := s] is quasinormal.

This corollary allows us to show our last ingredient for the soundness theorem: we
can transform a term with cut-rank 1 into a quasinormal one at exponential cost.

Lemma 4.14. If Γ ⊢m
1 t :τ then Γ ⊢2m

1 t′ :τ for some quasinormal t′ with t′ =β t.

Proof. Induction on m. If t is not quasinormal, it has a subterm of the form
(λx . r)s. Then, for some ∆, σ, ρ and k we have ∆, x : σ ⊢k

1 r : ρ, and ∆ ⊢k+1
1 s : σ

from which ∆ ⊢k+2
1 (λx . r)s : ρ was concluded. Since the cut was allowed, we have

rk(σ) < 1. Hence, by the induction hypotheses we get a quasinormal s′ =β s such

that ∆ ⊢2k+1

1 s′ : σ. Also by induction hypothesis we get a quasinormal r′ =β r

such that ∆, x : σ ⊢2k

1 r′ : ρ. By Corollary 4.13 we get ∆ ⊢2k+2k+1

1 r′[x := s′] : ρ and
r′[x := s′] is quasinormal, hence the claim.

We are now ready to show that every representable function is elementary recursive.
To keep the notation simple, we only state and prove this for unary functions, but
the generalization to higher arities is straightforward.

Theorem 4.15. If ⊢ t : Nat1 → Nat0 then t denotes an elementary function on

Church numerals.

Proof. We have x : Nat1 ⊢ tx : Nat0. Since all our terms are also typeable in
usual system F , hence strongly normalizing, and since subject reduction holds, we
can find (in maybe long time, which however is independent of the input) a normal
term t′ =β tx and x : Nat1 ⊢ t′ : Nat0. Since t′ is normal, inspection of the typing
rules yields that every occurrence of x must be within some context, that is, of the
form

(∀E1)
x : Nat1 ⊢ x : Nat1

x : Nat1 ⊢ x : ξ∗

for some level 1 type ξ, without (free) variable α1. Let c be the maximum of the
ranks of all the ξ’s occurring in that derivation and k the number of occurrences of
such ξ’s (note that c and k are still independent of the input).

Now, let a natural number n be given. Replacing all x : ξ∗ by derivations of n : ξ∗

yields a term t′′ =β tn and a derivation ⊢
k·(n+2)+2|t′|
c t′′ : Nat0. The bound on the

height of the derivation is obtained as follows: there are k derivations of height n+2
yielding n : ξ∗ and these are plugged into the derivation of t′ : Nat0. In the latter
derivation there is at most one inference for each symbol in t′ followed possible by
a single quantifier inference.

Using Corollary 4.9 we obtain a term t̃ =β t′′ =β tn such that

⊢
2c+1(k(n+2)+2|t′|)
1 t̃ : Nat0. Hence Lemma 4.14 and the remark on computing

the normal form of a quasinormal term provides means to calculate the normal
form of tn in elementary space. (Note that all the intermediate terms are also of
elementary bounded size.)

Together with Theorem 3.3 we obtain the claimed characterization.

Corollary 4.16. The representable functions are precisely the elementary re-

cursive functions.

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

An Elementary Fragment of Second-Order Lambda Calculus · 13

Note that our characterization does not mean that the normalization procedure
for terms typeable in our system is elementary recursive. The following easy coun-
terexample shows that this is indeed not the case: the terms (. . . ((2 2)2) . . . 2) with
n occurrences of 2 are of size O(n), but their normal forms are the numerals 2n(1)
of size Ω(2n(1)). Thus the normalization function has super-elementary growth.

REFERENCES

Altenkirch, T. and Coquand, T. 2001. A finitary subsystem of the polymorphic lambda-
calculus. In Typed Lambda Calculi and Applications, S. Abramsky, Ed. LNCS, vol. 2044.
Springer, 22–28.

Asperti, A. and Roversi, L. 2002. Intuitionistic light affine logic. ACM Transactions on Com-

putational Logic 3, 1, 137–175.

Clote, P. 1999. Computation models and function algebras. In Handbook of Computability

Theory, E. R. Griffor, Ed. Elsevier, 589–681.

Danos, V. and Joinet, J.-B. 2003. Linear logic and elementary time. Information and Compu-

tation 183, 1, 123–137.

Girard, J.-Y. 1971. Une extension de l’interprétation de Gödel à l’analyse, et son application
à l’élimination des coupures dans l’analyse et la théorie des types. In Proceedings of the 2nd

Scandinavian Logic Symposium, J. Fenstad, Ed. North-Holland, 63–92.

Girard, J.-Y. 1998. Light linear logic. Information and Computation 143, 2, 175–204.

Grzegorczyk, A. 1953. Some classes of recursive fuctions. Rozprawy Matematyczne 4.

Kalmár, L. 1943. Egyszerű példa eldönthetetlen aritmetikai problémára. Matematikai és Fizikai

Lapok 50, 1–23.

Leivant, D. 1991. Finitely stratified polymorphism. Information and Computation 93, 93–113.

Reynolds, J. 1974. Towards a theory of type structure. In Proceedings, Colloque sur la program-

mation. Springer LNCS 19, 408–425.

Simmons, H. 2004? Tiering as a recursion technique. Bulletin of Symbolic Logic, to appear.

Received October 2002; revised November 2003 and March 2004; accepted April 2004

ACM Transactions on Computational Logic, Vol. V, No. N, April 2004.

