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Abstract

We prove some independence results for the bounded arithmetic theory R, and
we define a class of functions that is shown to be an upper bound for the class of

functions definable by a certain restricted class of Y.¢-formulae in extensions of RJ.

Introduction

We deal with fragments of the theory S3 of Bounded Arithmetic of Buss [1], and
assume that the reader is familiar with this work. Just like among the fragments of
Peano Arithmetic, the weak fragments below I3 are the most interesting ones, the
bottom levels of the various hierarchies of subtheories of 55 leave a lot of seemingly
difficult open questions. So e.g. the question whether X} — PIND and ¥} — LIND
are equivalent over the BASTC axioms, or even whether S9 is a subtheory of 7Y, are
— to the author’s knowledge — not answered yet. We know, however, from [5] that if
59 is included in TY, then the inclusion is proper. In this paper we consider fragments

slightly stronger than S9, but weaker than T5.

In [4], we defined the extension S9, of S, which has the additional function symbols P
(for the predecessor), =, MSP and Count, where M SP(a,1) is the number obtained
by cutting off the last ¢ bits of a, and Count(a) is the number of bits set in the binary
expansion of a. The axioms of S, are the BASIC axioms of [1] together with the

following axioms on the new function symbols
e PO=0, P(Sz)=2, 2>0—S(Pz)==z
ez-0=z, z-Sy=Pla+y), z2>2y—(z=y)ty=2, 2<y—az=y=0
o MSP(z,0)=x, MSP(z,51)=|sMSP(z,1)]

e Count(0) =0, Count(2z) = Count(z), Count(S(2z))= S(Count(z))



and Xj — PIND (for sharply bounded formulae in the extended language). For SSJH

we have the following independence results:

Theorem 1 The function |tz| cannot be X%-defined in S,. Furthermore, there are

even functions in the complezity class ACY not ¥%-definable in SSJr.

Proof: We give a sketch of the proof, for details see [4]. We interpret SSJr in S, as
follows: The domain of the interpretation are the sequence numbers of sequences in
which every term is positive. The empty sequence interprets 0, and if (aq,...,a,)
interprets a, then {aq,...,a,, a,41) interprets a-2%7+1 if n is odd and (@ +1)-2%+1 —1
if n is even. Then the interpretations of the primitive functions of SSJr are polynomial
time computable and hence X.}-defined in Sy, and S, proves the interpretation of every

theorem of S S+ .

Now the sequence (n + 1) interprets 2"*! — 1, and the interpretation of |£(2"+! — 1)
is (1,...,1), a sequence of length n with a sequence number greater than 2". Thus
the provability of the interpretation of Vo dyy = L%xj in S9 would contradict Parikh’s
Theorem. The same holds if we consider the function |1(2l#l — 1)| instead, which is

easily seen to be in ACY. a

For many purposes, the LIN D axioms are more convenient than the PIN D axioms.
Therefore let Lg+ be like Sng, only with ¥ — PIN D replaced by X} — LIND. Then

we have
Proposition 2 59, and LY, are equivalent.

The proofs of the analogous statements (Thms. 2.6 and 2.12) in [1] can be carried out

in exactly the same way in our case. To prove LIN D for a formula A(z) in Sng, use
PIND on the formula A(|x]). Similarly, to prove PIN D for B(x) in L9, use LIND
on z in the formula B(M S P(a,|a| - z)).

The theory RY

In [6], the theories R} in the language of Sy augmented by ~ and M S P were defined.
R}, is axiomatized by the BASIC axioms, the above axioms for ~ and MSP, the

extensionality axiom
la| = |b] AVi<|a| (Bit(a,i) = Bit(b,i)) — a=0b,

where Bit is defined by Mod2(a) := a =2|1a| and Bit(a,7) := Mod2(M SP(a,7)), and
the ¥ — LBIN D axioms

A(0) 2V (A([e]) — A()) = Ve A(la)



for every ¥ formula A(z). R} corresponds to the complexity class NC, since in [6] it
is shown that R} is equivalent to the theory TN C of [3], whose El{—deﬁnable functions
are exactly those in NC.

We shall mainly be interested in R9, since our results about SSJr can be applied to this
theory. What is needed for this application is the following

Theorem 3 The extensionality axiom can be proved in Sng.

Proof: Let B(z) be the formula

la| = 16| AVi<]al (¢ < & — Bit(a,|a] = i) = Bit(b,|a] - i))
— MSP(a,|la|=2)= MSP(b,|a] - ) .

Then we can trivially prove B(0) in RY. Now suppose B(z), and furthermore suppose
Vi<la| (i < Sz — Bit(a,|a| —1) = Bit(b,|a| —1)) .

The latter formula is equivalent to the conjunction of Vi <|a| (i < 2 — Bit(a,|a| ~1) =
Bit(b,|a| 1)) and Bit(a,|a| = Sx) = Bit(b,|a| - Sz), and by the hypothesis B(z), we
conclude M SP(a,la|~x)= MSP(b,|a| - ). The following equations are immediately

proved from the definition of Bit without induction:

MSP(a,la|=Sx) = 2-MSP(a,|a|-2)+ Bit(a,|a| = Sz) and
MSP(b,|a|-Sz) = 2-MSP(b,|a|-z)+ Bit(b,|a| - Sz) .

By the above, the terms on the right sides of these equations are equal, hence
MSP(a,|a| - Sz) = MSP(b,|a] - Sz) ,

which proves B(Sx). Hence RY F B(z) — B(Sz), and by ¥} — LIN D we can conclude

B(]a|), which is equivalent to the extensionality axiom. O

Corollary 4 The theory obtained from SSJr by omitting the function symbol Count and

the axioms containing it is equivalent to RY.

Proof: In [6] it was shown that RY is equivalent to the theory obtained by adding to
S8 the functions ~ and M S P with their defining axioms and the extensionality axiom.
Clearly the function P and the axioms containing it are redundant in Sng, and since

in the proof of Thm. 3 the function Count is not used, the claim follows. O

By Thm. 1, we know that there are functions in the class AC® which are not Y-
definable in SSJr. Obviously, this also holds for the subsystem without the function

Count, hence we have



Corollary 5 RY cannot X}-define every function in AC°

The following consequence of Thm. 1 was also observed by G. Takeuti (in a letter to
the author).

Theorem 6 SSJr does not prove the ¥.)-comprehension arioms
Jy <2"lvi<|a| (Bit(y,i) = 1 — A1)
for all sharply bounded formulae A(7).

Proof: The theory T°AC? defined in [2] is essentially the same as S, together with
the extensionality and Yj-comprehension axioms, but in a language without Count
and multiplication, which is replaced by a restricted multiplication of the form 2=l . y.
Hence if the Xj-comprehension axioms could be proved in Sng, then T°AC° would be

a subtheory of Sng.

But by Thm. 33 of [2], the X-definable functions of T°ACY are exactly the functions in
AC?, hence every function in ACY would be X}-definable in Sng, contrary to Thm. 1. O

Corollary 7 RY does not prove all L}-comprehension azioms.

Since the class of sharply bounded formulae is closed under negation, this corollary

contrasts with the fact (cf. [6]) that for ¢ > 1, R}, proves the A’-comprehension axioms
Vi (A(i) = =B(i)) — Iy <2l vi<|a| (Bit(y,i) = 1 — A(i))

for every pair of X.!-formulae A(i) and B(7).

The proof of Thm. 3 also shows that the extensionality axiom can be omitted from the
theories TACY and T°ACY of [2] and their extensions.

pYt-definable functions of S, and R

Following Clote and Takeuti [2], we define the class of pure X%-formulae, or pXxb-

formulae for short, as follows:

Definition: A pX}-formula is a formula of the form
Jo1 <ty ...3x, <t, A(z1,...,2,)

where A(z1,...,2,) is sharply bounded. The notion of a pX}-definable function in a
theory T is defined analogous to that of a function being X.}-definable in 7.



Note that ¥%-replacement implies that every Y4-formula is equivalent to a pX%-formula.
In particular, every predicate definable in the standard model by a El{—formula can also
be defined by a pXi-formula. We expect that the class of pX%-definable functions in
52, and R does not differ much from the class of %}-definable functions, although we
suspect that ¥%-replacement cannot be proved in SSJr. Evidence for this is supported

by the fact that SSJr does not prove the following weak form of X°-replacement
Vo <|a| Jy<1 B(z,y) — Jy<2lvi<|a] B(i, Bit(y,1))

for all sharply bounded B(z,y), since it implies X.}-comprehension: to prove the com-
prehension axiom for a sharply bounded formula A(z), let B(z,y) :— (y = 1 < A(2))

in the above schemal.

Definition: Let fi,..., fr be some functions. The class C[fi,..., fx] is the smallest

class of functions containing

0 (1 k |
Cé )708 )7577T2( )7+7'7 ) L§J7 ||7#7MSP and flv' . '7fk
where céi) is the i-ary constant zero, and Fl(k)($1, ..., %) = z;, and closed under com-
position and sharply bounded minimization, i.e.if g isin C[fy,..., fx], then the function

the least @ with f(x,0) =0 if Ja<|a| f(z,b) =0

|l else

pe <lal (f(a,8) = 0) := {

is also in C[f1,..., fr]. If k = 0, the resulting class is simply called C.

The class C[Count] is properly contained in the complexity class NC!' = ALogTIME,
and even in the probably smaller class TC?. Furthermore, if in the definition of C
multiplication would be removed from the set of initial functions, then the resulting
class would be a proper subclass of AC?. But even with multiplication and the function
Count, we do not obtain all of AC?, i.e. the difference ACY \ C[Count] is non-empty.
This can be proved like Thm. 1 by the method of [4]. Therefore we consider the classes
Clf1,---, fr] as being very small.

We shall show that the pX.}-definable functions of R are all in C, and the pX}-definable
functions of SSJr are all in C[Count]. Before we can do this, a little bootstrapping of the
classes C[f1,..., fr] is needed. As usual, we say that a predicate A is in C[f,..., fz] if

its characteristic function y4 is.

Proposition 8 The ordering relation < is in C[fy,..., fr], and the class of predicates
in C[f1,..., fr] is closed under boolean operations and sharply bounded quantification.

Finally, C[f1, ..., fr] is closed under definition by cases.

! This consequence of Thm. 6 was pointed out by the referee.



Proof: Define 5g(z) := 1+ 2, then x<(z,y) := 5g(¢ ~y). Furthermore, 57 yields the
closure under negation, and closure under conjunction is simply obtained by multiplying

the characteristic functions. For closure under quantification, simply note that
Ve<l|t| A(z) <& pa<|t|+1-A(z) = |t].
Finally define the function f(z) = if A(z) then g1(2) else g2(x) by
f(z) = xa(z) - g1(2) + x-a(2) - g2(2) .

By Corollary 4 above, we can think of RY as the fragment of SSJr without Count,
axiomatized in a sequent calculus like defined in [1, Ch. 4] with the X} — LIN D rule,
and of S9; as the extension R[Count]. In general, let R9[fi,..., fi] be R) extended
by the function symbols fi,..., fx with some quantifier-free axioms uniquely specifying
them in the standard model, and LIN D for sharply bounded formulae in the extended

language.

By a standard proof theoretic argument, we can assume that every formula in a proof
of 3y <t A(a,y) with A a pX%-formula is pX?. Therefore our intended result follows

from the following witnessing theorem for pXt-formulae:

Theorem 9 Let Ci(a) be the pXi-formula
o <tq .. Fgg, <t Ai(24,0)
where x; denotes the sequence x;1,. .., %, and let D;(a) be the pYS-formula
Jyji <sj .- Fyje, <sjey Bilyy.a)
and let RS[f1,. .., fx] prove the following sequent
Ci(a),...,Chla) = Di(a),...,Dp(a)

where the formulae A;, B; are sharply bounded, and all the free variables in the sequent

are among the a. Then there are functions g;;, 1 <1< m,1<j <l inC[fi,..., fi]
such that
bll S tllv' L) blkl S tlkl P Al(b_lvg)v' LR bnl S tn1 PR bnkn S tnkn P An(b_nvﬁ)

= g11(b,a) <stia oo ngig(ba) < s1 A Bi(g11(b,a), ..., g10,(b,a),a), ...
ey gml(év@) S Sm1 AN ... /\gmﬁm(bvﬁ) S Smily, N Bm(gml(bvg)v .. '7gm€m(bvg)7ﬁ)

is satisfied in the standard model, where b denotes the sequence of all the variables b;;.



Proof: This is an adaption of the proof of Thm. 24 in [2], by induction on the length
of a proof of the sequent from the theorem, which we abbreviate I' =— A.

If ' = A is an initial sequent, then there is nothing to prove since we assumed that
all the axioms are quantifier-free. Otherwise, we distinguish cases dependent on the last
inference of a proof of ' = A. Most cases are straightforward, the only nontrivial
ones being (3 <:right), (Contraction:right), (Cut) and X} — LIND. We shall in fact
treat only simple cases of these inferences which show the principal ideas, which would

be hidden behind technical details in a treatment of the general cases.
So let the last inference in the proof be (3 <:right) of the form

Ju<s1 A(a,z) = Fy<sy Bla,y,t(a))
H{a) < v, 3a<s Alg,2) = Fe<udy<s; Ba,y,7)

By the induction hypothesis we have a function g in C[fy,..., fr] such that
b S 51, A(Qv b) = g(@v b) S S2 A B(Q,g(g, b)vt(g))

is true. Then we can simply define the function h(a,b) := t(a), since every term in the
language of RY[f1,..., fe] isin C[f1,..., fx], and obtain

ta) <u,b< s, Ala,b) = h(a,b) <ungla,b) < synBla,g(a,b), h(ab)) .

Now let the last inference be a (Contraction:right), which we assume for sake of sim-

plicity to look like

Jo<sA(a,2) = <t Bla.y). <t Bla,y)
Jr<s A(a,z) = Jy<t B(a,y) '

By the induction hypothesis, there are functions gy and g5 in C[fy,..., fi] such that
b< s, A(a,b) = g1(a,b) <taB(a,g1(a,b)), g2(a,0) < t A B(a, g2(a, b))
is true. Define the function ¢ by

| gila,b) if gi(a,b) <ta Bla, gi(a,t))
9(a,b) = { g2(a,b) else

By Prop. 8, g is in C[f1, ..., fr], and obviously we have
b<s,A(a,b) = g(a,b) <tnB(a,g(a,t)) .

Now let the last inference be a (Cut), which we assume to look like

Je <t A(a,z) = Jy<s B(a,y) Jy<s B(a,y) = F2<uC(a,z2)
Je <t A(a,2) = F2<uC(q,?)

7



By the induction hypothesis, there are functions gy and g5 in C[fy,..., fi] such that
b<t A(a,b) = ¢gi1(a,b) < s B(a,g1(a,b)) and
¢ <s,B(a,c) = ga2(a,c) <unCa, g c))
are true. Therefore we have
b<t,Aa.b) = g2(a, 91(a, b)) < unCla,g2(a, g1(a.D))) -

Finally, let the last inference be a ¥ — LIN D of the form

Jz<s B(a,v), Ala,b) = A(a, Sb), Jy<t Cla, y)
Jo <s B(a,z), A(a,0) = A(a,|c]), IJy<t Cla,y)

then by the induction hypothesis we have a function ¢ in C[fy,..., fr] such that
d<s, Bla,d), A(a,b) = A(a, 5b), g(a,d,b) <trC(a,g(a,d,b))

is true. What we need is a function h such that
d<s,B(a,d), Ale,0) = A(a,|c]), h(a,d,c) <tArC(a,h(a,d,c))

is true. Define the function h(a,d,c) := g(a,d, pz <|c|g(a,d,z) <t nC(a,g(a,d,z))).

Then there are two cases:
o There is an o < |¢| with g(a,d,2) <t A C(a,g9(a,d,2)). In this case, h(a,d,c) <
tAnC(a,h(a,d,c))is true.
o lor all 2 < ||, g(a,d,z) < t A C(a,g(a,d,z)) is false, hence by the induction
hypothesis we can conclude A(g, |c|) inductively from A(a,0).
In either case, the sequent above is true. a

Corollary 10 Every function pX}-definable in RS[f1,. .., fi] is in C[f1,. .., fx].

This follows immediately from Thm. 9.

Note that the only restriction imposed on the theories RY[f1,..., f,] is that the func-
tions fi,..., fn are axiomatized by quantifier-free axioms. Thus Thm. 9 and its corol-
lary apply e.g. to the theories RY for k > 2, where R) := RY[#s,...,#}] and the
functions #; are defined by #2 := # and a#, 1y := 2lzl#ilyl,
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